Convolution Quadrature for Wave Simulations

被引:13
|
作者
Hassell, Matthew [1 ]
Sayas, Francisco-Javier [1 ]
机构
[1] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
关键词
Convolution Quadrature; Acoustic waves; Time domain boundary integral equations; Overresolving in the Laplace domain for Convolution Quadrature; methods; BOUNDARY INTEGRAL-EQUATIONS; DISCRETIZED OPERATIONAL CALCULUS; TIME DISCRETIZATION; MULTISTEP;
D O I
10.1007/978-3-319-32146-2_2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
These notes develop the algorithmic aspects of convolution equations and their discretization by Convolution Quadrature, with an emphasis on the convolution equations that occur in the boundary integral equation formulation of wave scattering problems. The authors explore the development of CQ from a number of different perspectives. Clear algorithms for implementation of CQ are presented. A final example brings together the entire course to demonstrate the full discretization of a time domain boundary integral equation using Convolution Quadrature in time and a simple to program Nystrom flavored method in space.
引用
收藏
页码:71 / 159
页数:89
相关论文
共 50 条
  • [31] An error analysis of Runge–Kutta convolution quadrature
    Lehel Banjai
    Christian Lubich
    BIT Numerical Mathematics, 2011, 51 : 483 - 496
  • [32] Wavelets and convolution quadrature for the efficient solution of a 2D space-time BIE for the wave equation
    Bertoluzza, S.
    Falletta, S.
    Scuderi, L.
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 366
  • [33] Generalized convolution quadrature for non smooth sectorial problems
    Guo, J.
    Lopez-Fernandez, M.
    CALCOLO, 2025, 62 (01)
  • [34] The Unified Theory of Shifted Convolution Quadrature for Fractional Calculus
    Liu, Yang
    Yin, Baoli
    Li, Hong
    Zhang, Zhimin
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 89 (01)
  • [35] The Unified Theory of Shifted Convolution Quadrature for Fractional Calculus
    Yang Liu
    Baoli Yin
    Hong Li
    Zhimin Zhang
    Journal of Scientific Computing, 2021, 89
  • [36] Dissipation free low order convolution quadrature for TDBIE
    Banjai, L.
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), 2015, : 1210 - 1213
  • [37] On a reformulated convolution quadrature based boundary element method
    Schanz, M.
    CMES - Computer Modeling in Engineering and Sciences, 2010, 58 (02): : 109 - 128
  • [38] ON CONVOLUTION QUADRATURE AND HILLE-PHILLIPS OPERATIONAL CALCULUS
    LUBICH, C
    APPLIED NUMERICAL MATHEMATICS, 1992, 9 (3-5) : 187 - 199
  • [39] CONVOLUTION QUADRATURE AND DISCRETIZED OPERATIONAL CALCULUS .2.
    LUBICH, C
    NUMERISCHE MATHEMATIK, 1988, 52 (04) : 413 - 425
  • [40] On a Reformulated Convolution Quadrature Based Boundary Element Method
    Schanz, M.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2010, 58 (02): : 109 - 129