Convolution Quadrature for Wave Simulations

被引:13
|
作者
Hassell, Matthew [1 ]
Sayas, Francisco-Javier [1 ]
机构
[1] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
关键词
Convolution Quadrature; Acoustic waves; Time domain boundary integral equations; Overresolving in the Laplace domain for Convolution Quadrature; methods; BOUNDARY INTEGRAL-EQUATIONS; DISCRETIZED OPERATIONAL CALCULUS; TIME DISCRETIZATION; MULTISTEP;
D O I
10.1007/978-3-319-32146-2_2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
These notes develop the algorithmic aspects of convolution equations and their discretization by Convolution Quadrature, with an emphasis on the convolution equations that occur in the boundary integral equation formulation of wave scattering problems. The authors explore the development of CQ from a number of different perspectives. Clear algorithms for implementation of CQ are presented. A final example brings together the entire course to demonstrate the full discretization of a time domain boundary integral equation using Convolution Quadrature in time and a simple to program Nystrom flavored method in space.
引用
收藏
页码:71 / 159
页数:89
相关论文
共 50 条
  • [21] Fast and oblivious convolution quadrature
    Schaedle, Achim
    Lopez-Fernandez, Maria
    Lubich, Christian
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 28 (02): : 421 - 438
  • [22] A convolution quadrature Galerkin boundary element method for the exterior Neumann problem of the wave equation
    Chappell, D. J.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2009, 32 (12) : 1585 - 1608
  • [23] Convolution Quadrature Methods for Time-Space Fractional Nonlinear Diffusion-Wave Equations
    Huang, Jianfei
    Arshad, Sadia
    Jiao, Yandong
    Tang, Yifa
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2019, 9 (03) : 538 - 557
  • [24] Fractional Variational Integrators Based on Convolution Quadrature
    Belgacem, Khaled Hariz
    Jimenez, Fernando
    Ober-Bloebaum, Sina
    JOURNAL OF NONLINEAR SCIENCE, 2025, 35 (02)
  • [25] Convolution quadrature time-domain boundary element method for antiplane anisotropic viscoelastic wave propagation
    Saitoh, T.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2024, 164
  • [26] Generalized convolution quadrature with variable time stepping
    Lopez-Fernandez, Maria
    Sauter, Stefan
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2013, 33 (04) : 1156 - 1175
  • [27] On hybrid convolution quadrature approaches for modeling time-domain wave problems with broadband frequency content
    Rowbottom, Jacob
    Chappell, David J.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2021, 122 (24) : 7581 - 7608
  • [28] A convolution quadrature using derivatives and its application
    Ren, Hao
    Ma, Junjie
    Liu, Huilan
    BIT NUMERICAL MATHEMATICS, 2024, 64 (01)
  • [29] A convolution quadrature using derivatives and its application
    Hao Ren
    Junjie Ma
    Huilan Liu
    BIT Numerical Mathematics, 2024, 64
  • [30] OVERRESOLVING IN THE LAPLACE DOMAIN FOR CONVOLUTION QUADRATURE METHODS
    Betcke, T.
    Salles, N.
    Smigaj, W.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (01): : A188 - A213