Comparison of phase-field models for surface diffusion

被引:76
|
作者
Gugenberger, Clemens [1 ]
Spatschek, Robert [1 ,2 ]
Kassner, Klaus [3 ]
机构
[1] Forschungszentrum Julich, Inst Festkorperforsch, D-52425 Julich, Germany
[2] Northeastern Univ, Ctr Interdisciplinary Res Complex Syst, Boston, MA 02115 USA
[3] Univ Magdeburg, Inst Theoret Phys, D-39106 Magdeburg, Germany
来源
PHYSICAL REVIEW E | 2008年 / 78卷 / 01期
关键词
D O I
10.1103/PhysRevE.78.016703
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The description of surface-diffusion controlled dynamics via the phase-field method is less trivial than it appears at first sight. A seemingly straightforward approach from the literature is shown to fail to produce the correct asymptotics, albeit in a subtle manner. Two models are constructed that approximate known sharp-interface equations without adding undesired constraints. Numerical simulations of the standard and a more sophisticated model from the literature as well as of our two models are performed to assess the relative merits of each approach. The results suggest superior performance of the models in at least some situations.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Nonlocality and thermodynamic restrictions in phase-field models
    Morro, A
    APPLIED MATHEMATICS LETTERS, 2006, 19 (05) : 413 - 419
  • [43] Sharp interface limits of phase-field models
    Elder, KR
    Grant, M
    Provatas, N
    Kosterlitz, JM
    PHYSICAL REVIEW E, 2001, 64 (02):
  • [44] A STUDY ON PHASE-FIELD MODELS FOR BRITTLE FRACTURE
    Zhang, Fei
    Huang, Weizhang
    LI, Xianping
    Zhang, Shicheng
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2022, 19 (06) : 793 - 821
  • [45] Phase-Field Models for Solidification and Crystal Growth
    Ohno, Munekazu
    INTERNATIONAL JOURNAL OF MICROGRAVITY SCIENCE AND APPLICATION, 2013, 30 (01): : 24 - 29
  • [46] Phase-field models for brittle and cohesive fracture
    Julien Vignollet
    Stefan May
    René de Borst
    Clemens V. Verhoosel
    Meccanica, 2014, 49 : 2587 - 2601
  • [47] Pinning boundary conditions for phase-field models
    Lee, Hyun Geun
    Yang, Junxiang
    Kim, Junseok
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 82
  • [48] SymPhas-General Purpose Software for Phase-Field, Phase-Field Crystal, and Reaction-Diffusion Simulations
    Silber, Steven A.
    Karttunen, Mikko
    ADVANCED THEORY AND SIMULATIONS, 2022, 5 (01)
  • [49] Phase-Field Modeling of Hydrogen Diffusion and Trapping in Steels
    Jun Zhang
    Jie Su
    Boning Zhang
    Yi Zong
    Zhigang Yang
    Chi Zhang
    Hao Chen
    Acta Metallurgica Sinica(English Letters), 2021, 34 (10) : 1421 - 1426
  • [50] Phase-Field Modeling of Hydrogen Diffusion and Trapping in Steels
    Zhang, Jun
    Su, Jie
    Zhang, Boning
    Zong, Yi
    Yang, Zhigang
    Zhang, Chi
    Chen, Hao
    ACTA METALLURGICA SINICA-ENGLISH LETTERS, 2021, 34 (10) : 1421 - 1426