Comparison of phase-field models for surface diffusion

被引:76
|
作者
Gugenberger, Clemens [1 ]
Spatschek, Robert [1 ,2 ]
Kassner, Klaus [3 ]
机构
[1] Forschungszentrum Julich, Inst Festkorperforsch, D-52425 Julich, Germany
[2] Northeastern Univ, Ctr Interdisciplinary Res Complex Syst, Boston, MA 02115 USA
[3] Univ Magdeburg, Inst Theoret Phys, D-39106 Magdeburg, Germany
来源
PHYSICAL REVIEW E | 2008年 / 78卷 / 01期
关键词
D O I
10.1103/PhysRevE.78.016703
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The description of surface-diffusion controlled dynamics via the phase-field method is less trivial than it appears at first sight. A seemingly straightforward approach from the literature is shown to fail to produce the correct asymptotics, albeit in a subtle manner. Two models are constructed that approximate known sharp-interface equations without adding undesired constraints. Numerical simulations of the standard and a more sophisticated model from the literature as well as of our two models are performed to assess the relative merits of each approach. The results suggest superior performance of the models in at least some situations.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Phase-field models in materials science
    Steinbach, Ingo
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2009, 17 (07)
  • [22] Parallel computing for phase-field models
    Vondrous, Alexander
    Selzer, Michael
    Hoetzer, Johannes
    Nestler, Britta
    INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2014, 28 (01): : 61 - 72
  • [23] PHASE-FIELD MODELS FOR ANISOTROPIC INTERFACES
    MCFADDEN, GB
    WHEELER, AA
    BRAUN, RJ
    CORIELL, SR
    SEKERKA, RF
    PHYSICAL REVIEW E, 1993, 48 (03) : 2016 - 2024
  • [24] Phase-field models for fluid mixtures
    Morro, A.
    MATHEMATICAL AND COMPUTER MODELLING, 2007, 45 (9-10) : 1042 - 1052
  • [25] A phase-field approach to fracture coupled with diffusion
    Wu, T.
    De Lorenzis, L.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 312 : 196 - 223
  • [26] Efficient thermal field computation in phase-field models
    Li, Jing-Rebecca
    Calhoun, Donna
    Brush, Lucien
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (24) : 8945 - 8957
  • [27] Deriving surface-energy anisotropy for phenomenological phase-field models of solidification
    Majaniemi, Sami
    Provatas, Nikolas
    PHYSICAL REVIEW E, 2009, 79 (01):
  • [28] Phase-field study of surface diffusion enhanced break-ups of nanowire junctions
    Roy, Abhinav
    Varma, Arjun R.
    Gururajan, M. P.
    JOURNAL OF APPLIED PHYSICS, 2021, 130 (19)
  • [29] Spatial decay for several phase-field models
    Miranville, Alain
    Quintanilla, Ramon
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2013, 93 (10-11): : 801 - 810
  • [30] Hysteresis in phase-field models with thermal memory
    Gilardi, G
    Krejcí, P
    Sprekels, J
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2000, 23 (10) : 909 - 922