ASPECTS OF THE RIEMANNIAN GEOMETRY OF QUANTUM COMPUTATION

被引:0
|
作者
Brandt, Howard E. [1 ]
机构
[1] US Army, Res Lab, Adelphi, MD 20783 USA
关键词
Quantum computing; quantum circuits; quantum complexity; differential geometry; Riemannian geometry; geodesics; Lax equation; Jacobi fields; geodesic derivative;
D O I
暂无
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A review is given of some aspects of the Riemannian geometry of quantum computation in which the quantum evolution is represented in the tangent space manifold of the special unitary unimodular group SU (2(n)) for n qubits. The Riemannian right- invariant metric, connection, curvature, geodesic equation for minimal complexity quantum circuits, Jacobi equation and the lifted Jacobi equation for varying penalty parameter are reviewed. Sharpened tools for calculating the geodesic derivative are presented. The geodesic derivative may facilitate the numerical investigation of conjugate points and the global characteristics of geodesic paths in the group manifold, the determination of optimal quantum circuits for carrying out a quantum computation, and the determination of the complexity of particular quantum algorithms.
引用
收藏
页码:37 / 60
页数:24
相关论文
共 50 条
  • [21] Geometry of Quantum Computation with Qutrits
    Li, Bin
    Yu, Zu-Huan
    Fei, Shao-Ming
    [J]. SCIENTIFIC REPORTS, 2013, 3
  • [22] Geometry of abstraction in quantum computation
    Pavlovic, Dusko
    [J]. MATHEMATICAL FOUNDATIONS OF INFORMATION FLOW, 2012, 71 : 233 - 267
  • [23] Geometry of Quantum Computation with Qudits
    Ming-Xing Luo
    Xiu-Bo Chen
    Yi-Xian Yang
    Xiaojun Wang
    [J]. Scientific Reports, 4
  • [24] Geometry of Quantum Computation with Qudits
    Luo, Ming-Xing
    Chen, Xiu-Bo
    Yang, Yi-Xian
    Wang, Xiaojun
    [J]. SCIENTIFIC REPORTS, 2014, 4
  • [25] Geometry of Quantum Computation with Qutrits
    Bin Li
    Zu-Huan Yu
    Shao-Ming Fei
    [J]. Scientific Reports, 3
  • [26] Quantum gravity and Riemannian geometry on the fuzzy sphere
    Lira-Torres, Evelyn
    Majid, Shahn
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2021, 111 (02)
  • [27] RIEMANNIAN GEOMETRY AND STABILITY OF IDEAL QUANTUM GASES
    JANYSZEK, H
    MRUGALA, R
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (04): : 467 - 476
  • [28] Quantum gravity and Riemannian geometry on the fuzzy sphere
    Evelyn Lira-Torres
    Shahn Majid
    [J]. Letters in Mathematical Physics, 2021, 111
  • [29] Quantum computing - Computation from geometry
    Lloyd, S
    [J]. SCIENCE, 2001, 292 (5522) : 1669 - 1669
  • [30] CHARACTERIZING THE DEPOLARIZING QUANTUM CHANNEL IN TERMS OF RIEMANNIAN GEOMETRY
    Cafaro, Carlo
    Mancini, Stefano
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2012, 9 (02)