Geometry of Quantum Computation with Qutrits

被引:0
|
作者
Bin Li
Zu-Huan Yu
Shao-Ming Fei
机构
[1] School of Mathematical Sciences,
[2] Capital Normal University,undefined
[3] School of Mathematics and Statistics,undefined
[4] Northeast Normal University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Determining the quantum circuit complexity of a unitary operation is an important problem in quantum computation. By using the mathematical techniques of Riemannian geometry, we investigate the efficient quantum circuits in quantum computation with n qutrits. We show that the optimal quantum circuits are essentially equivalent to the shortest path between two points in a certain curved geometry of SU(3n). As an example, three-qutrit systems are investigated in detail.
引用
收藏
相关论文
共 50 条
  • [1] Geometry of Quantum Computation with Qutrits
    Li, Bin
    Yu, Zu-Huan
    Fei, Shao-Ming
    SCIENTIFIC REPORTS, 2013, 3
  • [2] The geometry of quantum computation
    Dowling, Mark R.
    Nielsen, Michael A.
    Quantum Information and Computation, 2008, 8 (10): : 0861 - 0899
  • [3] THE GEOMETRY OF QUANTUM COMPUTATION
    Dowling, Mark R.
    Nielsen, Michael A.
    QUANTUM INFORMATION & COMPUTATION, 2008, 8 (10) : 861 - 899
  • [4] Quantum computation as geometry
    Nielsen, MA
    Dowling, MR
    Gu, M
    Doherty, AC
    SCIENCE, 2006, 311 (5764) : 1133 - 1135
  • [5] Differential geometry of quantum computation
    Brandt, Howard E.
    JOURNAL OF MODERN OPTICS, 2008, 55 (19-20) : 3403 - 3412
  • [6] Riemannian Geometry of Quantum Computation
    Brandt, Howard E.
    QUANTUM INFORMATION SCIENCE AND ITS CONTRIBUTIONS TO MATHEMATICS, 2010, 68 : 61 - 101
  • [7] Geometry of abstraction in quantum computation
    Pavlovic, Dusko
    MATHEMATICAL FOUNDATIONS OF INFORMATION FLOW, 2012, 71 : 233 - 267
  • [8] Geometry of Quantum Computation with Qudits
    Luo, Ming-Xing
    Chen, Xiu-Bo
    Yang, Yi-Xian
    Wang, Xiaojun
    SCIENTIFIC REPORTS, 2014, 4
  • [9] Geometry of Quantum Computation with Qudits
    Ming-Xing Luo
    Xiu-Bo Chen
    Yi-Xian Yang
    Xiaojun Wang
    Scientific Reports, 4
  • [10] Riemannian geometry of quantum computation
    Brandt, Howard E.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) : E474 - E486