Geometry of Quantum Computation with Qutrits

被引:0
|
作者
Bin Li
Zu-Huan Yu
Shao-Ming Fei
机构
[1] School of Mathematical Sciences,
[2] Capital Normal University,undefined
[3] School of Mathematics and Statistics,undefined
[4] Northeast Normal University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Determining the quantum circuit complexity of a unitary operation is an important problem in quantum computation. By using the mathematical techniques of Riemannian geometry, we investigate the efficient quantum circuits in quantum computation with n qutrits. We show that the optimal quantum circuits are essentially equivalent to the shortest path between two points in a certain curved geometry of SU(3n). As an example, three-qutrit systems are investigated in detail.
引用
收藏
相关论文
共 50 条
  • [21] Jacobi fields in the Riemannian geometry of quantum computation
    Brandt, Howard E.
    QUANTUM INFORMATION AND COMPUTATION VIII, 2010, 7702
  • [22] Riemannian curvature in the differential geometry of quantum computation
    Brandt, Howard E.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2010, 42 (03): : 449 - 453
  • [23] The geometry of bipartite qutrits including bound entanglement
    Baumgartner, B.
    Hiesmayr, B. C.
    Narnhofer, H.
    PHYSICS LETTERS A, 2008, 372 (13) : 2190 - 2195
  • [24] Quantum information and entanglement transfer for qutrits
    Delgado, A.
    Saavedra, C.
    Retamal, J. C.
    PHYSICS LETTERS A, 2007, 370 (01) : 22 - 27
  • [25] Extending the Frontier of Quantum Computers With Qutrits
    Gokhale, Pranav
    Baker, Jonathan M.
    Duckering, Casey
    Chong, Frederic T.
    Brown, Kenneth R.
    Brown, Natalie C.
    IEEE MICRO, 2020, 40 (03) : 64 - 72
  • [26] Automated quantum operations in photonic qutrits
    Borges, G. F.
    Baldijao, R. D.
    Conde, J. G. L.
    Cabral, J. S.
    Marques, B.
    Terra Cunha, M.
    Cabello, A.
    Padua, S.
    PHYSICAL REVIEW A, 2018, 97 (02)
  • [27] Associative memory on qutrits by means of quantum annealing
    Vladimir Zobov
    Ivan Pichkovskiy
    Quantum Information Processing, 2020, 19
  • [28] Associative memory on qutrits by means of quantum annealing
    Zobov, Vladimir
    Pichkovskiy, Ivan
    QUANTUM INFORMATION PROCESSING, 2020, 19 (09)
  • [29] Authenticated Quantum Secure Direct Communication with Qutrits
    Liu, Wenjie
    Chen, Hanwu
    Li, Zhiqiang
    ICNC 2008: FOURTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 3, PROCEEDINGS, 2008, : 614 - 618
  • [30] Improved Quantum Circuits via Intermediate Qutrits
    Baker, Jonathan M.
    Duckering, Casey
    Gokhale, Pranav
    Brown, Natalie C.
    Brown, Kenneth R.
    Chong, Frederic T.
    ACM TRANSACTIONS ON QUANTUM COMPUTING, 2020, 1 (01):