The intersection of the spectra of two Sturm-Liouville equations

被引:0
|
作者
Zhang, YanXia [1 ]
Wang, ZhongZhi [1 ]
Zhang, Xuefeng [2 ]
机构
[1] AnHui Univ Technol, Sch Math & Phys, Maanshan 243002, Peoples R China
[2] AnHui Univ Technol, Dept Comp Sci, Maanshan 243002, Peoples R China
基金
中国国家自然科学基金;
关键词
Vectorial Sturm-Liouville problems; Eigenvalues; Spectrum; Multiplicity; Potential function; EIGENVALUES;
D O I
10.1016/j.amc.2012.08.105
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the intersection of the spectra for two Sturm-Liouville equations with general separated BCs and real coupled BCs. Under certain conditions, we proved that a two-dimensioned vectorial SLPs with separated BCs only has finitely many double eigenvalues and obtain a bound M-Q depending on Q(x) and its eigenvalues, which are larger than M-Q, are all simple. Finally, with the help of the obtained results, we conclude that the number of the same eigenvalue is finite for two one-dimensioned SLPs with general separated BCs or real coupled BCs. (C) 2012 Published by Elsevier Inc.
引用
收藏
页码:4232 / 4238
页数:7
相关论文
共 50 条
  • [32] INVERSE PROBLEM FOR STURM-LIOUVILLE AND HILL EQUATIONS
    IWASAKI, K
    ANNALI DI MATEMATICA PURA ED APPLICATA, 1987, 149 : 185 - 206
  • [33] Inverse Problems for Sturm-Liouville Difference Equations
    Bohner, Martin
    Koyunbakan, Hikmet
    FILOMAT, 2016, 30 (05) : 1297 - 1304
  • [34] GENERALIZED STURM-LIOUVILLE EQUATIONS .2.
    FRANKOVA, D
    SCHWABIK, S
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1988, 38 (03) : 531 - 553
  • [35] TRANSFORMATION OF STURM-LIOUVILLE DIFFERENTIAL-EQUATIONS
    BERKOVICH, LM
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1982, 16 (03) : 190 - 192
  • [36] Riesz bases of solutions of Sturm-Liouville equations
    Xionghui He
    Hans Volkmer
    Journal of Fourier Analysis and Applications, 2001, 7 : 297 - 307
  • [37] Sturm-Liouville Equations Involving Discontinuous Nonlinearities
    Bonanno, Gabriele
    D'Agui, Giuseppina
    Winkert, Patrick
    MINIMAX THEORY AND ITS APPLICATIONS, 2016, 1 (01): : 125 - 143
  • [38] On Sturm-Liouville equations with several spectral parameters
    Porter R.M.
    Boletín de la Sociedad Matemática Mexicana, 2016, 22 (1) : 141 - 163
  • [39] Discrete Sturm-Liouville equations with point interaction
    Ozbey, Gueher Gulcehre
    Aygar, Yelda
    Oznur, Guler Basak
    JOURNAL OF ANALYSIS, 2024, 32 (03): : 1725 - 1737
  • [40] Scattering Theory of Impulsive Sturm-Liouville Equations
    Bairamov, Elgiz
    Aygar, Yelda
    Eren, Basak
    FILOMAT, 2017, 31 (17) : 5401 - 5409