Variational techniques for a system of Sturm-Liouville equations

被引:2
|
作者
Shokooh, Saeid [1 ]
机构
[1] Gonbad Kavous Univ, Fac Basic Sci, Dept Math, Gonbad Kavous, Iran
关键词
Sixth order Sturm-Liouville equation; Multiplicity of solutions; Critical point; BOUNDARY-VALUE PROBLEM; POSITIVE SOLUTIONS; EXISTENCE;
D O I
10.1007/s41808-023-00217-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we study a system of sixth order Sturm-Liouville equations with positive parameter ?. By exploiting the variational method and critical point theory, we show that if the control parameter ? is placed in an appropriate interval, our problem has one nontrivial weak solution. It should be noted that no symmetry assumption is used in the results.
引用
收藏
页码:595 / 610
页数:16
相关论文
共 50 条
  • [1] Variational techniques for a system of Sturm–Liouville equations
    Saeid Shokooh
    Journal of Elliptic and Parabolic Equations, 2023, 9 : 595 - 610
  • [2] Variational iteration method for Sturm-Liouville differential equations
    Altintan, D.
    Ugur, Oe
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (02) : 322 - 328
  • [3] Reflectionless Sturm-Liouville equations
    Sims, Robert
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 208 (01) : 207 - 225
  • [4] Three nonnegative solutions for Sturm-Liouville BVP and application to the complete Sturm-Liouville equations
    Wang, Zhongqian
    Zhang, Xuejun
    Song, Mingliang
    AIMS MATHEMATICS, 2023, 8 (03): : 6543 - 6558
  • [5] REGULARIZATION OF SINGULAR STURM-LIOUVILLE EQUATIONS
    Goriunov, Andrii
    Mikhailets, Vladimir
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2010, 16 (02): : 120 - 130
  • [6] VARIATIONAL APPROXIMATION FOR FRACTIONAL STURM-LIOUVILLE PROBLEM
    Pandey, Prashant K.
    Pandey, Rajesh K.
    Agrawal, Om P.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2020, 23 (03) : 861 - 874
  • [7] Variational Estimation Methods for Sturm-Liouville Problems
    Cipu, Elena Corina
    Barbu, Cosmin Danut
    MATHEMATICS, 2022, 10 (20)
  • [8] A catalogue of Sturm-Liouville differential equations
    Everitt, WN
    Sturm-Liouville Theory: Past and Present, 2005, : 271 - 331
  • [9] SPECTRAL ASYMPTOTICS FOR STURM-LIOUVILLE EQUATIONS
    BENNEWITZ, C
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1989, 59 : 294 - 338
  • [10] The Sturm-Liouville Hierarchy of Evolution Equations
    Johnson, Russell
    Zampogni, Luca
    ADVANCED NONLINEAR STUDIES, 2011, 11 (03) : 555 - 591