Variational techniques for a system of Sturm-Liouville equations

被引:2
|
作者
Shokooh, Saeid [1 ]
机构
[1] Gonbad Kavous Univ, Fac Basic Sci, Dept Math, Gonbad Kavous, Iran
关键词
Sixth order Sturm-Liouville equation; Multiplicity of solutions; Critical point; BOUNDARY-VALUE PROBLEM; POSITIVE SOLUTIONS; EXISTENCE;
D O I
10.1007/s41808-023-00217-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we study a system of sixth order Sturm-Liouville equations with positive parameter ?. By exploiting the variational method and critical point theory, we show that if the control parameter ? is placed in an appropriate interval, our problem has one nontrivial weak solution. It should be noted that no symmetry assumption is used in the results.
引用
收藏
页码:595 / 610
页数:16
相关论文
共 50 条
  • [21] Inverse Problems for Sturm-Liouville Difference Equations
    Bohner, Martin
    Koyunbakan, Hikmet
    FILOMAT, 2016, 30 (05) : 1297 - 1304
  • [22] GENERALIZED STURM-LIOUVILLE EQUATIONS .2.
    FRANKOVA, D
    SCHWABIK, S
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1988, 38 (03) : 531 - 553
  • [23] TRANSFORMATION OF STURM-LIOUVILLE DIFFERENTIAL-EQUATIONS
    BERKOVICH, LM
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1982, 16 (03) : 190 - 192
  • [24] Riesz bases of solutions of Sturm-Liouville equations
    Xionghui He
    Hans Volkmer
    Journal of Fourier Analysis and Applications, 2001, 7 : 297 - 307
  • [25] Sturm-Liouville Equations Involving Discontinuous Nonlinearities
    Bonanno, Gabriele
    D'Agui, Giuseppina
    Winkert, Patrick
    MINIMAX THEORY AND ITS APPLICATIONS, 2016, 1 (01): : 125 - 143
  • [26] On Sturm-Liouville equations with several spectral parameters
    Porter R.M.
    Boletín de la Sociedad Matemática Mexicana, 2016, 22 (1) : 141 - 163
  • [27] BOUNDS FOR THE POINT SPECTRA OF STURM-LIOUVILLE EQUATIONS
    HARRIS, BJ
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1982, 25 (FEB): : 145 - 161
  • [28] Discrete Sturm-Liouville equations with point interaction
    Ozbey, Gueher Gulcehre
    Aygar, Yelda
    Oznur, Guler Basak
    JOURNAL OF ANALYSIS, 2024, 32 (03): : 1725 - 1737
  • [29] Scattering Theory of Impulsive Sturm-Liouville Equations
    Bairamov, Elgiz
    Aygar, Yelda
    Eren, Basak
    FILOMAT, 2017, 31 (17) : 5401 - 5409
  • [30] Spectral singularities of the nonhomogeneous Sturm-Liouville equations
    Adivar, M
    Bairamov, E
    APPLIED MATHEMATICS LETTERS, 2002, 15 (07) : 825 - 832