Variational techniques for a system of Sturm-Liouville equations

被引:2
|
作者
Shokooh, Saeid [1 ]
机构
[1] Gonbad Kavous Univ, Fac Basic Sci, Dept Math, Gonbad Kavous, Iran
关键词
Sixth order Sturm-Liouville equation; Multiplicity of solutions; Critical point; BOUNDARY-VALUE PROBLEM; POSITIVE SOLUTIONS; EXISTENCE;
D O I
10.1007/s41808-023-00217-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we study a system of sixth order Sturm-Liouville equations with positive parameter ?. By exploiting the variational method and critical point theory, we show that if the control parameter ? is placed in an appropriate interval, our problem has one nontrivial weak solution. It should be noted that no symmetry assumption is used in the results.
引用
收藏
页码:595 / 610
页数:16
相关论文
共 50 条
  • [31] Riesz bases of solutions of Sturm-Liouville equations
    He, XH
    Volkmer, H
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2001, 7 (03) : 297 - 307
  • [32] The intersection of the spectra of two Sturm-Liouville equations
    Zhang, YanXia
    Wang, ZhongZhi
    Zhang, Xuefeng
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (09) : 4232 - 4238
  • [33] Green element computation of the Sturm-Liouville equations
    Onyejekwe, OO
    ADVANCES IN ENGINEERING SOFTWARE, 1997, 28 (09) : 615 - 620
  • [34] A REMARK ON SINGULAR STURM-LIOUVILLE DIFFERENTIAL EQUATIONS
    STEIN, FM
    KLOPFENSTEIN, KF
    AMERICAN MATHEMATICAL MONTHLY, 1963, 70 (04): : 409 - &
  • [35] Sharp bounds of nodes for Sturm-Liouville equations
    Feng, Hao
    Meng, Gang
    Yan, Ping
    Zhou, Lijuan
    MONATSHEFTE FUR MATHEMATIK, 2024, 205 (01): : 137 - 149
  • [36] AN INVERSE-VARIATIONAL PRINCIPLE FOR THE STURM-LIOUVILLE EQUATION
    PEARSON, DB
    SKELTON, PLI
    INVERSE PROBLEMS, 1989, 5 (05) : 915 - 925
  • [37] On the invariant variational principle for Sturm-Liouville equation, linear and nonlinear Dirac system
    Khater, AH
    Callebaut, DK
    Ramady, AG
    Abdul-Aziz, SF
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1997, 110 (11): : 1297 - 1311
  • [38] A variational approach of Sturm-Liouville problems with the nonlinearity depending on the derivative
    Afrouzi, Ghasem A.
    Hadjian, Armin
    Radulescu, Vicentiu D.
    BOUNDARY VALUE PROBLEMS, 2015, : 1 - 17
  • [39] A VARIATIONAL APPROACH OF THE STURM-LIOUVILLE PROBLEM IN FRACTIONAL DIFFERENCE CALCULUS
    Mert, Raziye
    Erbe, Lynn
    Abdeljawad, Thabet
    DYNAMIC SYSTEMS AND APPLICATIONS, 2018, 27 (01): : 137 - 148