The study of asymptotic properties of the conjugacy class of a random element of the finite affine group leads one to define a probability measure on the set of all partitions of all positive integers. Four different probabilistic understandings of this measure are given-three using symmetric function theory and one using Markov chains. This leads to non-trivial enumerative results. Cycle index generating functions are derived and are used to compute the large dimension limiting probabilities that an element of the affine group is separable, cyclic, or semisimple and to study the convergence to these limits. The semisimple limit involves both Rogers-Ramanujan identities. This yields the first examples of such computations for a maximal parabolic subgroup of a finite classical group. (C) 2002 Elsevier Science (USA).
机构:
Virginia Tech Math Dept, Blacksburg, VA 24061 USA
USNA Math Dept, Annapolis, MD 21402 USAVirginia Tech Math Dept, Blacksburg, VA 24061 USA
Loehr, Nicholas A.
Wills, Andrew J.
论文数: 0引用数: 0
h-index: 0
机构:
Virginia Tech Math Dept, Blacksburg, VA 24061 USA
Randolph Macon Coll, Dept Math, Ashland, VA 23005 USAVirginia Tech Math Dept, Blacksburg, VA 24061 USA
机构:
Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
US Naval Acad, Dept Math, Annapolis, MD 21402 USAVirginia Tech, Dept Math, Blacksburg, VA 24061 USA
Loehr, Nicholas A.
Serrano, Luis G.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Quebec, Lab Combinatoire & Informat Math LaCIM, Montreal, PQ H3C 3P8, CanadaVirginia Tech, Dept Math, Blacksburg, VA 24061 USA
Serrano, Luis G.
Warrington, Gregory S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Vermont, Dept Math & Stat, Burlington, VT 05401 USAVirginia Tech, Dept Math, Blacksburg, VA 24061 USA