Abacus-tournament models for Hall-Littlewood polynomials
被引:2
|
作者:
Loehr, Nicholas A.
论文数: 0引用数: 0
h-index: 0
机构:
Virginia Tech Math Dept, Blacksburg, VA 24061 USA
USNA Math Dept, Annapolis, MD 21402 USAVirginia Tech Math Dept, Blacksburg, VA 24061 USA
Loehr, Nicholas A.
[1
,2
]
Wills, Andrew J.
论文数: 0引用数: 0
h-index: 0
机构:
Virginia Tech Math Dept, Blacksburg, VA 24061 USA
Randolph Macon Coll, Dept Math, Ashland, VA 23005 USAVirginia Tech Math Dept, Blacksburg, VA 24061 USA
Wills, Andrew J.
[1
,3
]
机构:
[1] Virginia Tech Math Dept, Blacksburg, VA 24061 USA
[2] USNA Math Dept, Annapolis, MD 21402 USA
[3] Randolph Macon Coll, Dept Math, Ashland, VA 23005 USA
In 2010, the first author introduced a combinatorial model for Schur polynomials based on labeled abaci. We generalize this construction to give analogous models for the Hall-Littlewood symmetric polynomials P-lambda, Q(lambda), and R-lambda, using objects called abacus-tournaments. We introduce various cancellation mechanisms on abacus-tournaments to obtain simpler combinatorial formulas and explain why these polynomials are divisible by certain products of t-factorials. These tools are then applied to give bijective proofs of several identities involving Hall-Littlewood polynomials, including the Pieri rule that expands the product P(mu)e(kappa) into a linear combination of Hall-Littlewood polynomials. (C) 2016 Elsevier B.V. All rights reserved.
机构:
Peking Univ, Beijing Int Ctr Math Res, Sch Math Sci, Beijing, Peoples R ChinaPeking Univ, Beijing Int Ctr Math Res, Sch Math Sci, Beijing, Peoples R China
Liu, Xiaobo
Yang, Chenglang
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Beijing Int Ctr Math Res, Beijing, Peoples R ChinaPeking Univ, Beijing Int Ctr Math Res, Sch Math Sci, Beijing, Peoples R China
机构:
Univ Michigan, Dept Math, 1844 East Hall,530 Church St, Ann Arbor, MI 48109 USAUniv Michigan, Dept Math, 1844 East Hall,530 Church St, Ann Arbor, MI 48109 USA