An efficient nonlinear solution method for non-equilibrium radiation diffusion

被引:74
|
作者
Knoll, DA [1 ]
Rider, WJ [1 ]
Olson, GL [1 ]
机构
[1] Univ Calif Los Alamos Natl Lab, Div Appl Theoret & Computat Phys, Los Alamos, NM 87545 USA
关键词
radiation diffusion; non-equilibrium; Newton-Krylov methods;
D O I
10.1016/S0022-4073(98)00132-0
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A new nonlinear solution method is developed and applied to a non-equilibrium radiation diffusion problem. With this new method, Newton-like super-linear convergence is achieved in the nonlinear iteration, without the complexity of forming or inverting the Jacobian from a standard Newton method. The method is a unique combination of an outer Newton-based iteration and and inner conjugate gradient-like (Krylov) iteration. The effects of the Jacobian are probed only through approximate matrix-vector products required in the conjugate gradient-like iteration. The methodology behind the Jacobian-free Newton-Krylov method is given in detail. It is demonstrated that a simple, successive substitution, linearization produces an effective preconditioning matrix for the Krylov method. The efficiencies of different methods are compared and the benefits of converging the nonlinearities within a time step are demonstrated. (C) 1999 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:15 / 29
页数:15
相关论文
共 50 条
  • [31] DIFFUSION OF NON-EQUILIBRIUM CARRIERS IN DISORDERED MATERIALS
    ARKHIPOV, VI
    RUDENKO, AI
    SOVIET PHYSICS SEMICONDUCTORS-USSR, 1982, 16 (05): : 530 - 531
  • [32] DIFFUSION OF NON-EQUILIBRIUM CARRIERS IN INHOMOGENEOUS SEMICONDUCTORS
    SHIK, AY
    SOVIET PHYSICS SEMICONDUCTORS-USSR, 1979, 13 (09): : 1061 - 1062
  • [33] New physics-based preconditioning of implicit methods for non-equilibrium radiation diffusion
    Mousseau, VA
    Knoll, DA
    JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 190 (01) : 42 - 51
  • [34] Nonlinear eigenmodes of a non-equilibrium harmonic oscillator
    Pinsker, Florian
    Alexander, Tristram J.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2015, 471 (2180):
  • [35] A nonlinear viscoelastic model and non-equilibrium entropies
    Sun, Mengran
    Jou, David
    Zhang, Jinjun
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2016, 229 : 96 - 100
  • [36] Radiation calculation in non-equilibrium shock layer
    Dubois, J
    International Workshop on Radiation of High Temperature Gases in Atmospheric Entry, Pt 2, Proceedings, 2005, 583 : 41 - 46
  • [37] Conical intersections in solution: non-equilibrium versus equilibrium solvation
    Spezia, R
    Burghardt, I
    Hynes, JT
    MOLECULAR PHYSICS, 2006, 104 (5-7) : 903 - 914
  • [38] A theoretical approach for non-equilibrium radiation dosimetry
    Ding, George X.
    Duggan, Dennis M.
    Coffey, Charles W.
    PHYSICS IN MEDICINE AND BIOLOGY, 2008, 53 (13): : 3493 - 3499
  • [39] NON-EQUILIBRIUM SOLVATION DYNAMICS IN SOLUTION REACTIONS
    VANDERZWAN, G
    HYNES, JT
    JOURNAL OF CHEMICAL PHYSICS, 1983, 78 (06): : 4174 - 4185
  • [40] Analytical method of nonlinear coupled constitutive relations for rarefied non-equilibrium flows
    HE, Zhiqiang
    JIANG, Zhongzheng
    ZHANG, Huangwei
    CHEN, Weifang
    CHINESE JOURNAL OF AERONAUTICS, 2021, 34 (02) : 136 - 153