An efficient nonlinear solution method for non-equilibrium radiation diffusion
被引:74
|
作者:
Knoll, DA
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Alamos Natl Lab, Div Appl Theoret & Computat Phys, Los Alamos, NM 87545 USAUniv Calif Los Alamos Natl Lab, Div Appl Theoret & Computat Phys, Los Alamos, NM 87545 USA
Knoll, DA
[1
]
Rider, WJ
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Alamos Natl Lab, Div Appl Theoret & Computat Phys, Los Alamos, NM 87545 USAUniv Calif Los Alamos Natl Lab, Div Appl Theoret & Computat Phys, Los Alamos, NM 87545 USA
Rider, WJ
[1
]
Olson, GL
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Alamos Natl Lab, Div Appl Theoret & Computat Phys, Los Alamos, NM 87545 USAUniv Calif Los Alamos Natl Lab, Div Appl Theoret & Computat Phys, Los Alamos, NM 87545 USA
Olson, GL
[1
]
机构:
[1] Univ Calif Los Alamos Natl Lab, Div Appl Theoret & Computat Phys, Los Alamos, NM 87545 USA
A new nonlinear solution method is developed and applied to a non-equilibrium radiation diffusion problem. With this new method, Newton-like super-linear convergence is achieved in the nonlinear iteration, without the complexity of forming or inverting the Jacobian from a standard Newton method. The method is a unique combination of an outer Newton-based iteration and and inner conjugate gradient-like (Krylov) iteration. The effects of the Jacobian are probed only through approximate matrix-vector products required in the conjugate gradient-like iteration. The methodology behind the Jacobian-free Newton-Krylov method is given in detail. It is demonstrated that a simple, successive substitution, linearization produces an effective preconditioning matrix for the Krylov method. The efficiencies of different methods are compared and the benefits of converging the nonlinearities within a time step are demonstrated. (C) 1999 Elsevier Science Ltd. All rights reserved.
机构:
School of Mathematics, Institute of Natural Sciences, MOE-LSC, Shanghai Jiao Tong University, ChinaSchool of Mathematics, Institute of Natural Sciences, MOE-LSC, Shanghai Jiao Tong University, China
Jin, Shi
Tang, Min
论文数: 0引用数: 0
h-index: 0
机构:
School of Mathematics, Institute of Natural Sciences, MOE-LSC, Shanghai Jiao Tong University, ChinaSchool of Mathematics, Institute of Natural Sciences, MOE-LSC, Shanghai Jiao Tong University, China
Tang, Min
Zhang, Xiaojiang
论文数: 0引用数: 0
h-index: 0
机构:
School of Mathematics, Institute of Natural Sciences, MOE-LSC, Shanghai Jiao Tong University, ChinaSchool of Mathematics, Institute of Natural Sciences, MOE-LSC, Shanghai Jiao Tong University, China