An efficient nonlinear solution method for non-equilibrium radiation diffusion

被引:74
|
作者
Knoll, DA [1 ]
Rider, WJ [1 ]
Olson, GL [1 ]
机构
[1] Univ Calif Los Alamos Natl Lab, Div Appl Theoret & Computat Phys, Los Alamos, NM 87545 USA
关键词
radiation diffusion; non-equilibrium; Newton-Krylov methods;
D O I
10.1016/S0022-4073(98)00132-0
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A new nonlinear solution method is developed and applied to a non-equilibrium radiation diffusion problem. With this new method, Newton-like super-linear convergence is achieved in the nonlinear iteration, without the complexity of forming or inverting the Jacobian from a standard Newton method. The method is a unique combination of an outer Newton-based iteration and and inner conjugate gradient-like (Krylov) iteration. The effects of the Jacobian are probed only through approximate matrix-vector products required in the conjugate gradient-like iteration. The methodology behind the Jacobian-free Newton-Krylov method is given in detail. It is demonstrated that a simple, successive substitution, linearization produces an effective preconditioning matrix for the Krylov method. The efficiencies of different methods are compared and the benefits of converging the nonlinearities within a time step are demonstrated. (C) 1999 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:15 / 29
页数:15
相关论文
共 50 条
  • [1] Efficient nonlinear solution method for non-equilibrium radiation diffusion
    Knoll, D.A.
    Rider, W.J.
    Olson, G.L.
    Journal of Quantitative Spectroscopy and Radiative Transfer, 1999, 63 (01): : 15 - 29
  • [2] Monotone finite point method for non-equilibrium radiation diffusion equations
    Zhongyi Huang
    Ye Li
    BIT Numerical Mathematics, 2016, 56 : 659 - 679
  • [3] Monotone finite point method for non-equilibrium radiation diffusion equations
    Huang, Zhongyi
    Li, Ye
    BIT NUMERICAL MATHEMATICS, 2016, 56 (02) : 659 - 679
  • [4] Adaptive Implicit Non-Equilibrium Radiation Diffusion
    Philip, B.
    Wang, Z.
    Berrill, M.
    Rodriguez, M.
    Pernice, M.
    NUMERICAL MODELING OF SPACE PLASMA FLOWS ASTRONUM-2012, 2013, 474 : 271 - 276
  • [5] Moving mesh finite difference solution of non-equilibrium radiation diffusion equations
    Xiaobo Yang
    Weizhang Huang
    Jianxian Qiu
    Numerical Algorithms, 2019, 82 : 1409 - 1440
  • [6] Moving mesh finite difference solution of non-equilibrium radiation diffusion equations
    Yang, Xiaobo
    Huang, Weizhang
    Qiu, Jianxian
    NUMERICAL ALGORITHMS, 2019, 82 (04) : 1409 - 1440
  • [7] Equilibrium and non-equilibrium solution of nonlinear population evolution systems
    Wang, Jin Mei
    APPLIED MATERIALS AND TECHNOLOGIES FOR MODERN MANUFACTURING, PTS 1-4, 2013, 423-426 : 2244 - 2248
  • [8] Asymptotic analysis of discrete schemes for non-equilibrium radiation diffusion
    Cui, Xia
    Yuan, Guang-wei
    Shen, Zhi-jun
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 313 : 415 - 429
  • [9] Discontinuous finite element method for 1D non-equilibrium radiation diffusion equations
    Zhang, Rongpei
    Yu, Xijun
    Cui, Xia
    Feng, Tao
    Jisuan Wuli/Chinese Journal of Computational Physics, 2012, 29 (05): : 641 - 646
  • [10] Physics-based preconditioning and the Newton-Krylov method for non-equilibrium radiation diffusion
    Mousseau, VA
    Knoll, DA
    Rider, WJ
    JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 160 (02) : 743 - 765