Virtual element methods for the obstacle problem

被引:25
|
作者
Wang, Fei [1 ]
Wei, Huayi [2 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
[2] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
virtual element method; variational inequality; polygonal meshes; error estimates; DISCONTINUOUS GALERKIN METHODS; APPROXIMATION; FORMULATION;
D O I
10.1093/imanum/dry055
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study virtual element methods (VEMs) for solving the obstacle problem, which is a representative elliptic variational inequality of the first kind. VEMs can be regarded as a generalization of standard finite element methods with the addition of some suitable nonpolynomial functions, and the degrees of freedom are carefully chosen so that the stiffness matrix can be computed without actually computing the nonpolynomial functions. With this special design, VEMS can easily deal with complicated element geometries. In this paper we establish a priori error estimates of VEMs for the obstacle problem. We prove that the lowest-order (k = 1) VEM achieves the optimal convergence order, and suboptimal order is obtained for the VEM with k = 2. Two numerical examples are reported to show that VEM can work on very general polygonal elements, and the convergence orders in the H(1 norm agree )well with the theoretical prediction.
引用
收藏
页码:708 / 728
页数:21
相关论文
共 50 条
  • [41] A virtual element method for the transmission eigenvalue problem
    Mora, David
    Velasquez, Ivan
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (14): : 2803 - 2831
  • [42] A virtual element method for the acoustic vibration problem
    Beirao da Veiga, Lourenco
    Mora, David
    Rivera, Gonzalo
    Rodriguez, Rodolfo
    NUMERISCHE MATHEMATIK, 2017, 136 (03) : 725 - 763
  • [43] A virtual element method for the acoustic vibration problem
    Lourenço Beirão da Veiga
    David Mora
    Gonzalo Rivera
    Rodolfo Rodríguez
    Numerische Mathematik, 2017, 136 : 725 - 763
  • [44] Virtual element method for simplified friction problem
    Wang, Fei
    Wei, Huayi
    APPLIED MATHEMATICS LETTERS, 2018, 85 : 125 - 131
  • [45] A virtual element method for the Steklov eigenvalue problem
    Mora, David
    Rivera, Gonzalo
    Rodriguez, Rodolfo
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (08): : 1421 - 1445
  • [46] Crouzeix-Raviart Finite Element Approximation for the Parabolic Obstacle Problem
    Gudi, Thirupathi
    Majumder, Papri
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2020, 20 (02) : 273 - 292
  • [47] Convergence analysis of a conforming adaptive finite element method for an obstacle problem
    Dietrich Braess
    Carsten Carstensen
    Ronald H. W. Hoppe
    Numerische Mathematik, 2007, 107 : 455 - 471
  • [48] A PRIORI FINITE ELEMENT ERROR ANALYSIS FOR OPTIMAL CONTROL OF THE OBSTACLE PROBLEM
    Meyer, Christian
    Thoma, Oliver
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (01) : 605 - 628
  • [49] Convergence analysis of a conforming adaptive finite element method for an obstacle problem
    Braess, Dietrich
    Carstensen, Carsten
    Hoppe, Ronald H. W.
    NUMERISCHE MATHEMATIK, 2007, 107 (03) : 455 - 471
  • [50] Qualitative Methods for the Inverse Obstacle Problem: A Comparison on Experimental Data
    Bevacqua, Martina T.
    Palmeri, Roberta
    JOURNAL OF IMAGING, 2019, 5 (04)