Global asymptotic stability of a ratio-dependent predator-prey system with diffusion

被引:48
|
作者
Fan, YH [1 ]
Li, WT
机构
[1] NW Normal Univ, Coll Math & Informat Sci, Lanzhou 730070, Peoples R China
[2] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
关键词
upper and lower solutions; Lyapunov functions; predator-prey system;
D O I
10.1016/j.cam.2005.04.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with a predator-prey system with diffusion. The global asymptotic stability of the unique positive constant equilibrium is obtained under certain conditions. The Method used here is the upper and lower solutions combined with the monotone iteration and constructing suitable Lyapunov functions. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:205 / 227
页数:23
相关论文
共 50 条
  • [31] Stability and Hopf bifurcation of a delayed ratio-dependent predator-prey system
    Wang, Wan-Yong
    Pei, Li-Jun
    ACTA MECHANICA SINICA, 2011, 27 (02) : 285 - 296
  • [32] Persistence and stability in a ratio-dependent predator-prey system with delay and harvesting
    Maiti, Alakes
    Patra, Bibek
    Samanta, G. P.
    NATURAL RESOURCE MODELING, 2007, 20 (04) : 575 - 600
  • [33] The joint effects of diffusion and delay on the stability of a ratio-dependent predator-prey model
    Kejun Zhuang
    Gao Jia
    Advances in Difference Equations, 2017
  • [34] The joint effects of diffusion and delay on the stability of a ratio-dependent predator-prey model
    Zhuang, Kejun
    Jia, Gao
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [35] Ratio-dependent predator-prey system with stage structure for prey
    Song, XY
    Cai, LM
    Neumann, AU
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2004, 4 (03): : 747 - 758
  • [36] Persistence and global stability of a ratio-dependent predator-prey model with stage structure
    Xu, R
    Chaplain, MAJ
    Davidson, FA
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 158 (03) : 729 - 744
  • [37] RATIO-DEPENDENT PREDATOR-PREY THEORY
    MATSON, P
    BERRYMAN, A
    ECOLOGY, 1992, 73 (05) : 1528 - 1528
  • [38] Heteroclinic bifurcation in a ratio-dependent predator-prey system
    Tang, YL
    Zhang, WN
    JOURNAL OF MATHEMATICAL BIOLOGY, 2005, 50 (06) : 699 - 712
  • [39] On a Generalized Discrete Ratio-Dependent Predator-Prey System
    Fan, Yong-Hong
    Wang, Lin-Lin
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2009, 2009
  • [40] Heteroclinic bifurcation in a ratio-dependent predator-prey system
    Yilei Tang
    Weinian Zhang
    Journal of Mathematical Biology, 2005, 50 : 699 - 712