A parallel implementation of the CMRH method for dense linear systems

被引:5
|
作者
Duminil, Sebastien [1 ]
机构
[1] Univ Littoral, Ctr Univ Mi Voix, Lab Math Pures & Appl, F-62228 Calais, France
关键词
Linear systems; Krylov method; Hessenberg process; Dense matrix; Parallel implementation; MPI; CMRH; GMRES; Preconditioned CMRH; GMRES;
D O I
10.1007/s11075-012-9616-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents an implementation of the CMRH (Changing Minimal Residual method based on the Hessenberg process) iterative method suitable for parallel architectures. CMRH is an alternative to GMRES and QMR, the well-known Krylov methods for solving linear systems with non-symmetric coefficient matrices. CMRH generates a (non orthogonal) basis of the Krylov subspace through the Hessenberg process. On dense matrices, it requires less storage than GMRES. Parallel numerical experiments on a distributed memory computer with up to 16 processors are shown on some applications related to the solution of dense linear systems of equations. A comparison with the GMRES method is also provided on those test examples.
引用
收藏
页码:127 / 142
页数:16
相关论文
共 50 条
  • [21] Parallel householder method for linear systems
    Chawla, MM
    Evans, DJ
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1995, 58 (3-4) : 159 - 167
  • [22] An asynchronous parallel method for linear systems
    You, ZY
    Wang, CD
    COMPUTING AND COMBINATORICS, 1995, 959 : 372 - 378
  • [23] Parallel implementation of the semi-conjugate residual method for systems of linear algebraic equations
    S. G. Pudov
    Optoelectronics, Instrumentation and Data Processing, 2007, 43 (2) : 153 - 158
  • [24] PARALLEL IMPLEMENTATION OF A ROW-PROJECTION METHOD FOR SOLVING SPARSE LINEAR-SYSTEMS
    ZILLI, G
    SUPERCOMPUTER, 1993, 10 (01): : 33 - 43
  • [25] Parallel Implementation of the Semi-Conjugate Residual Method for Systems of Linear Algebraic Equations
    Pudov, S. G.
    OPTOELECTRONICS INSTRUMENTATION AND DATA PROCESSING, 2007, 43 (02) : 153 - 158
  • [26] CMRH method as iterative solver for boundary element acoustic systems
    Alia, Ahlem
    Sadok, Hassane
    Souli, Mhamed
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2012, 36 (03) : 346 - 350
  • [27] Some Computational Results on MPI Parallel Implementation of Dense Simplex Method
    Badr, El-Said
    Moussa, Mahmoud
    Paparrizos, Konstantinos
    Samaras, Nikolaos
    Sifaleras, Angelo
    PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 17, 2006, 17 : 228 - +
  • [28] COMPARISON OF PARALLEL DIAGONALIZATION METHODS FOR SOLVING DENSE LINEAR-SYSTEMS
    COSNARD, M
    ROBERT, Y
    TRYSTRAM, D
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1985, 301 (16): : 781 - 784
  • [29] Parallel sparse approximate preconditioners for the solution of large dense linear systems
    González, Patricia
    Pena, Tomás F.
    Cabaleiro, José C.
    Recent Advances in Applied and Theoretical Mathematics, 2000, : 50 - 55
  • [30] Iterative methods for dense linear systems on distributed memory parallel computers
    Yokoyama, M
    Shigehara, T
    Mizoguchi, H
    Mishima, T
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1999, E82A (03) : 483 - 486