A parallel implementation of the CMRH method for dense linear systems

被引:5
|
作者
Duminil, Sebastien [1 ]
机构
[1] Univ Littoral, Ctr Univ Mi Voix, Lab Math Pures & Appl, F-62228 Calais, France
关键词
Linear systems; Krylov method; Hessenberg process; Dense matrix; Parallel implementation; MPI; CMRH; GMRES; Preconditioned CMRH; GMRES;
D O I
10.1007/s11075-012-9616-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents an implementation of the CMRH (Changing Minimal Residual method based on the Hessenberg process) iterative method suitable for parallel architectures. CMRH is an alternative to GMRES and QMR, the well-known Krylov methods for solving linear systems with non-symmetric coefficient matrices. CMRH generates a (non orthogonal) basis of the Krylov subspace through the Hessenberg process. On dense matrices, it requires less storage than GMRES. Parallel numerical experiments on a distributed memory computer with up to 16 processors are shown on some applications related to the solution of dense linear systems of equations. A comparison with the GMRES method is also provided on those test examples.
引用
收藏
页码:127 / 142
页数:16
相关论文
共 50 条
  • [11] CMRH: A new method for solving nonsymmetric linear systems based on the Hessenberg reduction algorithm
    Sadok, H
    NUMERICAL ALGORITHMS, 1999, 20 (04) : 303 - 321
  • [12] A Polynomial Preconditioned Global CMRH Method for Linear Systems with Multiple Right-Hand Sides
    Zhang, Ke
    Gu, Chuanqing
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [13] The block CMRH method for solving nonsymmetric linear systems with multiple right-hand sides
    Amini, S.
    Toutounian, F.
    Gachpazan, M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 337 : 166 - 174
  • [14] Parallel programming models for dense linear algebra on heterogeneous systems
    Abalenkovs, M.
    Abdelfattah, A.
    Dongarra, J.
    Gates, M.
    Haidar, A.
    Kurzak, J.
    Luszczek, P.
    Tomov, S.
    Yamazaki, I.
    YarKhan, A.
    Supercomputing Frontiers and Innovations, 2015, 2 (04) : 67 - 86
  • [15] A PARALLEL ELIMINATION ALGORITHM FOR THE SOLUTION OF DENSE LINEAR-SYSTEMS
    CHAWLA, MM
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1993, 47 (1-2) : 97 - 107
  • [16] An extended GS method for dense linear systems
    Niki, Hiroshi
    Kohno, Toshiyuki
    Abe, Kuniyoshi
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 231 (01) : 177 - 186
  • [17] Parallel iterative methods for dense linear systems in inductance extraction
    Mahawar, H
    Sarin, V
    PARALLEL COMPUTING, 2003, 29 (09) : 1219 - 1235
  • [18] FAST AND EFFICIENT PARALLEL SOLUTION OF DENSE LINEAR-SYSTEMS
    PAN, V
    REIF, J
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1989, 17 (11) : 1481 - 1491
  • [19] Parallel Solvers for Dense Linear Systems for Heterogeneous Computational clusters
    Reddy, Ravi
    Lastovetsky, Alexey
    Alonso, Pedro
    2009 IEEE INTERNATIONAL SYMPOSIUM ON PARALLEL & DISTRIBUTED PROCESSING, VOLS 1-5, 2009, : 2559 - +
  • [20] Parallel solutions of large dense linear systems using MPI
    Zhang, J
    Maple, C
    PAR ELEC 2002: INTERNATIONAL CONFERENCE ON PARALLEL COMPUTING IN ELECTRICAL ENGINEERING, 2002, : 312 - 317