A parallel implementation of the CMRH method for dense linear systems

被引:5
|
作者
Duminil, Sebastien [1 ]
机构
[1] Univ Littoral, Ctr Univ Mi Voix, Lab Math Pures & Appl, F-62228 Calais, France
关键词
Linear systems; Krylov method; Hessenberg process; Dense matrix; Parallel implementation; MPI; CMRH; GMRES; Preconditioned CMRH; GMRES;
D O I
10.1007/s11075-012-9616-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents an implementation of the CMRH (Changing Minimal Residual method based on the Hessenberg process) iterative method suitable for parallel architectures. CMRH is an alternative to GMRES and QMR, the well-known Krylov methods for solving linear systems with non-symmetric coefficient matrices. CMRH generates a (non orthogonal) basis of the Krylov subspace through the Hessenberg process. On dense matrices, it requires less storage than GMRES. Parallel numerical experiments on a distributed memory computer with up to 16 processors are shown on some applications related to the solution of dense linear systems of equations. A comparison with the GMRES method is also provided on those test examples.
引用
收藏
页码:127 / 142
页数:16
相关论文
共 50 条
  • [1] A parallel implementation of the CMRH method for dense linear systems
    Sébastien Duminil
    Numerical Algorithms, 2013, 63 : 127 - 142
  • [2] A new implementation of the CMRH method for solving dense linear systems
    Heyouni, M.
    Sadok, H.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 213 (02) : 387 - 399
  • [3] Algorithms for the CMRH method for dense linear systems
    Duminil, Sebastien
    Heyouni, Mohammed
    Marion, Philippe
    Sadok, Hassane
    NUMERICAL ALGORITHMS, 2016, 71 (02) : 383 - 394
  • [4] Algorithms for the CMRH method for dense linear systems
    Sébastien Duminil
    Mohammed Heyouni
    Philippe Marion
    Hassane Sadok
    Numerical Algorithms, 2016, 71 : 383 - 394
  • [5] The simpler block CMRH method for linear systems
    Abdaoui, Ilias
    Elbouyahyaoui, Lakhdar
    Heyouni, Mohammed
    NUMERICAL ALGORITHMS, 2020, 84 (04) : 1265 - 1293
  • [6] The simpler block CMRH method for linear systems
    Ilias Abdaoui
    Lakhdar Elbouyahyaoui
    Mohammed Heyouni
    Numerical Algorithms, 2020, 84 : 1265 - 1293
  • [7] A flexible CMRH algorithm for nonsymmetric linear systems
    Zhang K.
    Gu C.
    Journal of Applied Mathematics and Computing, 2014, 45 (1-2) : 43 - 61
  • [8] A parallel solver for huge dense linear systems
    Badia, J. M.
    Movilla, J. L.
    Climente, J. I.
    Castillo, M.
    Marques, M.
    Mayo, R.
    Quintana-Orti, E. S.
    Planelles, J.
    COMPUTER PHYSICS COMMUNICATIONS, 2011, 182 (11) : 2441 - 2442
  • [9] CMRH: A new method for solving nonsymmetric linear systems based on the Hessenberg reduction algorithm
    H. Sadok
    Numerical Algorithms, 1999, 20 : 303 - 321
  • [10] Heavy Ball Restarted CMRH Methods for Linear Systems
    Teng, Zhongming
    Wang, Xuansheng
    MATHEMATICAL AND COMPUTATIONAL APPLICATIONS, 2018, 23 (01)