Donaldson wall-crossing formulas via topology

被引:6
|
作者
Leness, TG [1 ]
机构
[1] Florida Int Univ, Dept Math, Miami, FL 33199 USA
关键词
D O I
10.1515/form.1999.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The wall-crossing formula for Donaldson invariants of smooth, simply connected four-manifolds with b(+) = 1 is shown to be a topological invariant of the manifold for reducible connections with two or fewer singular points. The explicit formulas derived agree with those of Ellingsrud and Gottsche and Friedman and Qin for algebraic manifolds.
引用
收藏
页码:417 / 457
页数:41
相关论文
共 50 条
  • [31] Disk counting and wall-crossing phenomenon via family Floer theory
    Yuan, Hang
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2022, 24 (04)
  • [32] On wall-crossing for K-stability
    Zhou, Chuyu
    ADVANCES IN MATHEMATICS, 2023, 413
  • [33] Equivalence of three wall-crossing formulae
    Sen, Ashoke
    COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2012, 6 (03) : 601 - 659
  • [34] Wall-crossing from supersymmetric galaxies
    Andriyash, Evgeny
    Denef, Frederik
    Jafferis, Daniel L.
    Moore, Gregory W.
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (01):
  • [35] Quasimap wall-crossing for GIT quotients
    Yang Zhou
    Inventiones mathematicae, 2022, 227 : 581 - 660
  • [36] Combinatorial wall-crossing and the Mullineux involution
    Dimakis, Panagiotis
    Yue, Guangyi
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2019, 50 (01) : 49 - 72
  • [37] Landau-Ginzburg/Calabi-Yau Correspondence via Wall-Crossing
    Jinwon CHOI
    Young-Hoon KIEM
    Chinese Annals of Mathematics,Series B, 2017, (04) : 883 - 900
  • [38] Instanton Counting and Wall-Crossing for Orbifold Quivers
    Michele Cirafici
    Annamaria Sinkovics
    Richard J. Szabo
    Annales Henri Poincaré, 2013, 14 : 1001 - 1041
  • [39] A geometric derivation of the dyon wall-crossing group
    Cheng, Miranda C. N.
    Hollands, Lotte
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (04):
  • [40] Wall-crossing, Hitchin systems, and the WKB approximation
    Gaiotto, Davide
    Moore, Gregory W.
    Neitzke, Andrew
    ADVANCES IN MATHEMATICS, 2013, 234 : 239 - 403