Instanton Counting and Wall-Crossing for Orbifold Quivers

被引:0
|
作者
Michele Cirafici
Annamaria Sinkovics
Richard J. Szabo
机构
[1] Instituto Superior Técnico,Centro de Análise Matemática, Geometria e Sistemas Dinâmicos, Departamento de Matemática
[2] University of Cambridge,Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences
[3] Heriot–Watt University,Department of Mathematics
[4] Maxwell Institute for Mathematical Sciences,undefined
来源
Annales Henri Poincaré | 2013年 / 14卷
关键词
Modulus Space; Coulomb Branch; Cluster Algebra; Path Algebra; Plane Partition;
D O I
暂无
中图分类号
学科分类号
摘要
Noncommutative Donaldson–Thomas invariants for abelian orbifold singularities can be studied via the enumeration of instanton solutions in a six-dimensional noncommutative \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal N}=2}$$\end{document} gauge theory; this construction is based on the generalized McKay correspondence and identifies the instanton counting with the counting of framed representations of a quiver which is naturally associated with the geometry of the singularity. We extend these constructions to compute BPS partition functions for higher-rank refined and motivic noncommutative Donaldson–Thomas invariants in the Coulomb branch in terms of gauge theory variables and orbifold data. We introduce the notion of virtual instanton quiver associated with the natural symplectic charge lattice which governs the quantum wall-crossing behaviour of BPS states in this context. The McKay correspondence naturally connects our formalism with other approaches to wall-crossing based on quantum monodromy operators and cluster algebras.
引用
收藏
页码:1001 / 1041
页数:40
相关论文
共 50 条
  • [1] Instanton Counting and Wall-Crossing for Orbifold Quivers
    Cirafici, Michele
    Sinkovics, Annamaria
    Szabo, Richard J.
    ANNALES HENRI POINCARE, 2013, 14 (04): : 1001 - 1041
  • [2] Wall-crossing, open BPS counting and matrix models
    Sulkowski, Piotr
    JOURNAL OF HIGH ENERGY PHYSICS, 2011, (03):
  • [3] An interesting wall-crossing: failure of the wall-crossing/MMP correspondence
    Fatemeh Rezaee
    Selecta Mathematica, 2024, 30 (5)
  • [4] Counting Invariant of Perverse Coherent Sheaves and its Wall-crossing
    Nagao, Kentaro
    Nakajima, Hiraku
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (17) : 3885 - 3938
  • [5] An interesting wall-crossing: Failure of the wall-crossing/MMP correspondence
    Rezaee, Fatemeh
    arXiv, 2020,
  • [6] Erratum: Wall-crossing, open BPS counting and matrix models
    Piotr Sułkowski
    Journal of High Energy Physics, 2011
  • [7] Disk counting and wall-crossing phenomenon via family Floer theory
    Hang Yuan
    Journal of Fixed Point Theory and Applications, 2022, 24
  • [8] Disk counting and wall-crossing phenomenon via family Floer theory
    Yuan, Hang
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2022, 24 (04)
  • [9] Wall-crossing made smooth
    Boris Pioline
    Journal of High Energy Physics, 2015
  • [10] Ab initio wall-crossing
    Kim, Heeyeon
    Park, Jaemo
    Wang, Zhaolong
    Yi, Piljin
    JOURNAL OF HIGH ENERGY PHYSICS, 2011, (09):