Instanton Counting and Wall-Crossing for Orbifold Quivers

被引:0
|
作者
Michele Cirafici
Annamaria Sinkovics
Richard J. Szabo
机构
[1] Instituto Superior Técnico,Centro de Análise Matemática, Geometria e Sistemas Dinâmicos, Departamento de Matemática
[2] University of Cambridge,Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences
[3] Heriot–Watt University,Department of Mathematics
[4] Maxwell Institute for Mathematical Sciences,undefined
来源
Annales Henri Poincaré | 2013年 / 14卷
关键词
Modulus Space; Coulomb Branch; Cluster Algebra; Path Algebra; Plane Partition;
D O I
暂无
中图分类号
学科分类号
摘要
Noncommutative Donaldson–Thomas invariants for abelian orbifold singularities can be studied via the enumeration of instanton solutions in a six-dimensional noncommutative \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal N}=2}$$\end{document} gauge theory; this construction is based on the generalized McKay correspondence and identifies the instanton counting with the counting of framed representations of a quiver which is naturally associated with the geometry of the singularity. We extend these constructions to compute BPS partition functions for higher-rank refined and motivic noncommutative Donaldson–Thomas invariants in the Coulomb branch in terms of gauge theory variables and orbifold data. We introduce the notion of virtual instanton quiver associated with the natural symplectic charge lattice which governs the quantum wall-crossing behaviour of BPS states in this context. The McKay correspondence naturally connects our formalism with other approaches to wall-crossing based on quantum monodromy operators and cluster algebras.
引用
收藏
页码:1001 / 1041
页数:40
相关论文
共 50 条
  • [21] CONSTRUCTIVE WALL-CROSSING AND SEIBERG WITTEN
    Yi, Piljin
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2013, 28 (3-4):
  • [22] Quasimap wall-crossing for GIT quotients
    Zhou, Yang
    INVENTIONES MATHEMATICAE, 2022, 227 (02) : 581 - 660
  • [23] Some remarks on combinatorial wall-crossing
    Dobrovolska, Galyna
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (01):
  • [24] DERIVED FUNCTORS RELATED TO WALL-CROSSING
    Carlin, Kevin J.
    COMMUNICATIONS IN ALGEBRA, 2010, 38 (12) : 4633 - 4648
  • [25] WALL-CROSSING FORMULAS FOR FRAMED OBJECTS
    Mozgovoy, Sergey
    QUARTERLY JOURNAL OF MATHEMATICS, 2013, 64 (02): : 489 - 513
  • [26] Quiver Symmetries and Wall-Crossing Invariance
    Del Monte, Fabrizio
    Longhi, Pietro
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 398 (01) : 89 - 132
  • [27] Wall-crossing formulas in Hamiltonian geometry
    Paradan, Paul-Emile
    GEOMETRIC ASPECTS OF ANALYSIS AND MECHANICS: IN HONOR OF THE 65TH BIRTHDAY OF HANS DUISTERMAAT, 2011, 292 : 295 - 343
  • [28] On the Wall-Crossing Formula for Quadratic Differentials
    Allegretti, Dylan G. L.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (09) : 8033 - 8077
  • [29] Wall-crossing from supersymmetric galaxies
    Andriyash, Evgeny
    Denef, Frederik
    Jafferis, Daniel L.
    Moore, Gregory W.
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (01):
  • [30] Quasimap wall-crossing for GIT quotients
    Yang Zhou
    Inventiones mathematicae, 2022, 227 : 581 - 660