Invariant Hermitian operator and geometric phase for the Heisenberg spin system in a time-dependent magnetic field

被引:11
|
作者
Yan, FL
Yang, LG
Li, BZ
机构
[1] CCAST, World Lab, Beijing 100080, Peoples R China
[2] Hebei Normal Univ, Dept Phys, Shijiazhuang 050016, Peoples R China
[3] Acad Sinica, Inst Phys, Beijing 100080, Peoples R China
[4] Acad Sinica, Ctr Condensed Matter Phys, Beijing 100080, Peoples R China
关键词
D O I
10.1016/S0375-9601(99)00423-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An invariant Hermitian operator is constructed for the Heisenberg spin system in a time-dependent magnetic field. Using it we obtain the general solution of the Schrodinger equation for this system. By virtue of the general solution, the geometric phase of Pancharatnam type is worked out. (C) 1999 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:207 / 211
页数:5
相关论文
共 50 条
  • [1] Invariant Hermitian operator and geometric phase for the Heisenberg spin system in a time-dependent magnetic field
    Yan, Fengli
    Yang, Linguang
    Li, Bozang
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 259 (3-4): : 207 - 211
  • [2] Invariant Hermitian operator and density operator for the adiabatically time-dependent system
    Yan, FL
    Yang, LG
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2001, 36 (03) : 263 - 266
  • [3] Time-dependent quantum systems and the invariant Hermitian operator
    Lai, YZ
    Liang, JQ
    MullerKirsten, HJW
    Zhou, JG
    PHYSICAL REVIEW A, 1996, 53 (05) : 3691 - 3693
  • [4] Formal exact solution for the Heisenberg spin system in a time-dependent magnetic field and Aharonov-Anandan phase
    Yan, FL
    Yang, LG
    Li, BZ
    PHYSICS LETTERS A, 1999, 251 (05) : 289 - 293
  • [5] Time evolution of quantum systems with time-dependent Hamiltonian and the invariant Hermitian operator
    Lai, YZ
    Liang, JQ
    MullerKirsten, HJW
    Zhou, JG
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (08): : 1773 - 1783
  • [6] Geometric phase of the gyromotion for charged particles in a time-dependent magnetic field
    Liu, Jian
    Qin, Hong
    PHYSICS OF PLASMAS, 2011, 18 (07)
  • [7] Geometric Phase of Quantum Dots in the Time-Dependent Isotropic Magnetic Field
    Yu, Zhao-Xian
    Jiao, Zhi-Yong
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2010, 49 (03) : 652 - 656
  • [8] Geometric Phase of Quantum Dots in the Time-Dependent Isotropic Magnetic Field
    Zhao-Xian Yu
    Zhi-Yong Jiao
    International Journal of Theoretical Physics, 2010, 49 : 652 - 656
  • [9] Geometric Phase in the Interaction of a Time-Dependent Light Field with ℑ(3) System
    Qiang Liu
    Zhao-Xian Yu
    Zhi-Yong Jiao
    International Journal of Theoretical Physics, 2010, 49 : 1452 - 1456
  • [10] SPIN IN A TIME-DEPENDENT MAGNETIC-FIELD
    LUSHNIKOV, AA
    PHYSICS LETTERS A, 1973, A 44 (07) : 525 - 526