Invariant Hermitian operator and geometric phase for the Heisenberg spin system in a time-dependent magnetic field

被引:11
|
作者
Yan, FL
Yang, LG
Li, BZ
机构
[1] CCAST, World Lab, Beijing 100080, Peoples R China
[2] Hebei Normal Univ, Dept Phys, Shijiazhuang 050016, Peoples R China
[3] Acad Sinica, Inst Phys, Beijing 100080, Peoples R China
[4] Acad Sinica, Ctr Condensed Matter Phys, Beijing 100080, Peoples R China
关键词
D O I
10.1016/S0375-9601(99)00423-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An invariant Hermitian operator is constructed for the Heisenberg spin system in a time-dependent magnetic field. Using it we obtain the general solution of the Schrodinger equation for this system. By virtue of the general solution, the geometric phase of Pancharatnam type is worked out. (C) 1999 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:207 / 211
页数:5
相关论文
共 50 条
  • [31] Geometric Phase in a Time-Dependent System with Higgs Algebra Structure
    Zhao-Xian Yu
    Zhi-Yong Jiao
    Xiang-Gui Li
    International Journal of Theoretical Physics, 2009, 48 : 2916 - 2919
  • [32] Geometric Phase in a Time-Dependent System with Higgs Algebra Structure
    Yu, Zhao-Xian
    Jiao, Zhi-Yong
    Li, Xiang-Gui
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2009, 48 (10) : 2916 - 2919
  • [33] Geometric Phase in a Time-Dependent System with Laguerre Polynomial State
    An-Ling Wang
    Fu-Ping Liu
    Zhao-Xian Yu
    International Journal of Theoretical Physics, 2010, 49 : 531 - 535
  • [34] Geometric Phase in a Time-Dependent Bose-Fermi System
    Zhao-Xian Yu
    Zhi-Yong Jiao
    International Journal of Theoretical Physics, 2010, 49 : 526 - 530
  • [35] Geometric Phase in a Time-Dependent Bose-Fermi System
    Yu, Zhao-Xian
    Jiao, Zhi-Yong
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2010, 49 (03) : 526 - 530
  • [36] Geometric phases for neutral and charged particles in a time-dependent magnetic field
    Lin, QG
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (02): : 377 - 391
  • [37] Dynamic phase transition in the Heisenberg model under a time-dependent oscillating field
    Huang, ZG
    Chen, ZG
    Zhang, FM
    Du, YW
    PHYSICS LETTERS A, 2005, 338 (06) : 485 - 493
  • [38] Geometric phase of quantized electromagnetic field in time-dependent linear media
    Maamache, M.
    Chaabi, N.
    Choi, J. R.
    EPL, 2010, 89 (04)
  • [39] Hermitian Dirac Hamiltonian in the time-dependent gravitational field
    Leclerc, M
    CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (12) : 4013 - 4019
  • [40] Time-dependent Lagrangians invariant by a vector field
    Muñoz-Lecanda, MC
    Román-Roy, N
    Yániz-Fernández, FJ
    LETTERS IN MATHEMATICAL PHYSICS, 2001, 57 (02) : 107 - 121