Geometric Phase of Quantum Dots in the Time-Dependent Isotropic Magnetic Field

被引:5
|
作者
Yu, Zhao-Xian [1 ]
Jiao, Zhi-Yong [2 ]
机构
[1] Beijing Informat Sci & Technol Univ, Dept Phys, Beijing 100192, Peoples R China
[2] China Univ Petr E China, Dept Phys, Dongying 257061, Peoples R China
关键词
Geometric phase; Quantum dots; ADIABATIC APPROXIMATION; HARMONIC-OSCILLATOR; INVARIANT THEORY; BERRYS PHASE; EVOLUTION;
D O I
10.1007/s10773-010-0245-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By using of the invariant theory, we have studied the geometric phase of quantum dots in the time-dependent isotropic magnetic field, the dynamical and geometric phases are given, respectively.
引用
收藏
页码:652 / 656
页数:5
相关论文
共 50 条
  • [1] Geometric Phase of Quantum Dots in the Time-Dependent Isotropic Magnetic Field
    Zhao-Xian Yu
    Zhi-Yong Jiao
    International Journal of Theoretical Physics, 2010, 49 : 652 - 656
  • [2] Geometric Phase of Anisotropic Quantum Dots in the Presence of Time-Dependent Magnetic Field
    Zhao-Xian Yu
    Zhi-Yong Jiao
    International Journal of Theoretical Physics, 2010, 49 : 786 - 790
  • [3] Geometric Phase of Anisotropic Quantum Dots in the Presence of Time-Dependent Magnetic Field
    Yu, Zhao-Xian
    Jiao, Zhi-Yong
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2010, 49 (04) : 786 - 790
  • [4] Geometric phase of the gyromotion for charged particles in a time-dependent magnetic field
    Liu, Jian
    Qin, Hong
    PHYSICS OF PLASMAS, 2011, 18 (07)
  • [5] Electronic coupling of vertically coupled quantum dots: effect of the time-dependent magnetic field
    Ben Salem, E
    Jaziri, S
    Bennaceur, R
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2002, 88 (2-3): : 213 - 219
  • [6] Influences of multiterminal and time-dependent magnetic field on the transport properties of triple quantum dots
    Deng, Y. X.
    Yan, X. H.
    Tang, N. S.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2009, 41 (03): : 353 - 358
  • [7] The geometric phase of the quantum systems with slow but finite rate of the external time-dependent field
    Jia Xin-Yan
    Li Wei-Dong
    Liang Jiu-Qing
    CHINESE PHYSICS, 2007, 16 (10): : 2855 - 2861
  • [8] Quantum and classical geometric phase of the time-dependent harmonic oscillator
    Wang, XB
    Kwek, LC
    Oh, CH
    PHYSICAL REVIEW A, 2000, 62 (03) : 4
  • [9] Invariant Hermitian operator and geometric phase for the Heisenberg spin system in a time-dependent magnetic field
    Yan, FL
    Yang, LG
    Li, BZ
    PHYSICS LETTERS A, 1999, 259 (3-4) : 207 - 211
  • [10] Invariant Hermitian operator and geometric phase for the Heisenberg spin system in a time-dependent magnetic field
    Yan, Fengli
    Yang, Linguang
    Li, Bozang
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 259 (3-4): : 207 - 211