Texture Profiles and Composite Kernel Frame for Hyperspectral Image Classification

被引:0
|
作者
Wang, Cailing [1 ]
Wang, Hongwei [2 ]
Ren, Jinchang [3 ]
Zhang, Yinyong [3 ]
Wen, Jia [4 ]
Zhao, Jing [1 ]
机构
[1] Xian Shiyou Univ, Sch Comp Sci, Xian, Peoples R China
[2] Engn Univ CAPF, Xian, Peoples R China
[3] Univ Strathclyde, Dept Elect & Elect Engn, Glasgow, Lanark, Scotland
[4] Tianjin Polytechn Univ, Sch Elect Engn, Tianjin, Peoples R China
关键词
Hyperspectral image classification; Spectral-spatial analysis; Generalized composite kernel; FEATURE-EXTRACTION; REDUCTION;
D O I
10.1007/978-3-030-00563-4_31
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
It is of great interest in spectral-spatial features classification for High spectral images (HSI) with high spatial resolution. This paper presents a new Spectral-spatial method for improving accuracy of hyperspectral image classification. Specifically, a new texture feature extraction algorithm based on traditional LBP method is proposed directly. Texture profiles is obtained by the proposed method. A composite kernel framework is employed to join spatial and spectral features. The classifiers adopted in this work is the multinomial logistic regression. In order to illustrate the good performance of the proposed framework, the two real hyperspectral image datasets are employed. Our experimental results with real hyperspectral images indicate that the proposed framework can enhance the classification accuracy than some traditional alternatives.
引用
收藏
页码:325 / 333
页数:9
相关论文
共 50 条
  • [31] HYPERSPECTRAL IMAGE CLASSIFICATION VIA KERNEL SPARSE REPRESENTATION
    Chen, Yi
    Nasrabadi, Nasser M.
    Tran, Trac D.
    2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011, : 1233 - 1236
  • [32] Kernel-based methods for hyperspectral image classification
    Camps-Valls, G
    Bruzzone, L
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (06): : 1351 - 1362
  • [33] Modified wavelet kernel methods for hyperspectral image classification
    Hsu, Pai-Hui
    Huang, Xiu-Man
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXI, 2015, 9643
  • [34] Hyperspectral Image Classification via Kernel Sparse Representation
    Chen, Yi
    Nasrabadi, Nasser M.
    Tran, Trac D.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (01): : 217 - 231
  • [35] HYPERSPECTRAL IMAGE CLASSIFICATION WITH MULTIPLE KERNEL BOOSTING ALGORITHM
    Wang, Yuting
    Gu, Yanfeng
    Gao, Guoming
    Wang, Qingwang
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 5047 - 5051
  • [36] Multibranch Selective Kernel Networks for Hyperspectral Image Classification
    Alipour-Fard, T.
    Paoletti, M. E.
    Haut, Juan M.
    Arefi, H.
    Plaza, J.
    Plaza, A.
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (06) : 1089 - 1093
  • [37] A Multiple-Mapping Kernel for Hyperspectral Image Classification
    Wang, Liguo
    Hao, Siyuan
    Wang, Qunming
    Atkinson, Peter M.
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (05) : 978 - 982
  • [38] Multiple Kernel Learning for Hyperspectral Image Classification: A Review
    Gu, Yanfeng
    Chanussot, Jocelyn
    Jia, Xiuping
    Benediktsson, Jon Atli
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (11): : 6547 - 6565
  • [39] Pseudolabel Guided Kernel Learning for Hyperspectral Image Classification
    Yang, Shujun
    Hou, Junhui
    Jia, Yuheng
    Mei, Shaohui
    Du, Qian
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (03) : 1000 - 1011
  • [40] CONVMIXER WITH SELECTIVE KERNEL ATTENTION FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Alwadei, Bashair
    Zuair, Mansour
    Al Rahhal, Mohamad
    Bazi, Yakoub
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 3203 - 3206