A Multiple-Mapping Kernel for Hyperspectral Image Classification

被引:9
|
作者
Wang, Liguo [1 ]
Hao, Siyuan [1 ]
Wang, Qunming [2 ]
Atkinson, Peter M. [3 ]
机构
[1] Harbin Engn Univ, Coll Informat & Commun Engn, Harbin 150001, Peoples R China
[2] Hong Kong Polytech Univ, Dept Land Surveying & Geoinformat, Kowloon, Hong Kong, Peoples R China
[3] Univ Southampton, Geog & Environm, Southampton SO17 1BJ, Hants, England
基金
中国国家自然科学基金;
关键词
Hyperspectral image classification; multiple-mapping kernel; support vector machine (SVM); COMPOSITE KERNELS;
D O I
10.1109/LGRS.2014.2371044
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The kernel function plays an important role in machine learning methods such as the support vector machine. In this letter, a new kernel framework is developed for hyper-spectral image classification. In contrast to existing composite kernels constructed via a linearly weighted combination, the multiple-mapping kernel proposed in this letter is obtained through repeated nonlinear mappings. Experiments indicate that the proposed multiple-mapping kernel framework (MMKF) is effective for hyper-spectral image classification. Compared to the single kernel methods, the MMKF tends to be more advantageous in terms of classification accuracy, particularly for the situation with a small-size training set.
引用
收藏
页码:978 / 982
页数:5
相关论文
共 50 条
  • [1] HYPERSPECTRAL IMAGE CLASSIFICATION WITH MULTIPLE KERNEL BOOSTING ALGORITHM
    Wang, Yuting
    Gu, Yanfeng
    Gao, Guoming
    Wang, Qingwang
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 5047 - 5051
  • [2] MULTIPLE COMPOSITE KERNEL LEARNING FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Du, Peijun
    Xia, Junshi
    Ghamisi, Pedram
    Iwasaki, Akira
    Benediktsson, Jon Atli
    [J]. 2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 2223 - 2226
  • [3] Multiple Kernel Learning for Hyperspectral Image Classification: A Review
    Gu, Yanfeng
    Chanussot, Jocelyn
    Jia, Xiuping
    Benediktsson, Jon Atli
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (11): : 6547 - 6565
  • [4] Discriminative Multiple Kernel Learning for Hyperspectral Image Classification
    Wang, Qingwang
    Gu, Yanfeng
    Tuia, Devis
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (07): : 3912 - 3927
  • [5] Multiple Kernel Feature Line Embedding for Hyperspectral Image Classification
    Chen, Ying-Nong
    [J]. REMOTE SENSING, 2019, 11 (24)
  • [6] Hyperspectral image classification based on multiple kernel mutual learning
    Cui, Binge
    Zhong, Liwei
    Yin, Bei
    Ren, Guangbo
    Lu, Yan
    [J]. INFRARED PHYSICS & TECHNOLOGY, 2019, 99 : 113 - 122
  • [7] A NOVEL MULTIPLE KERNEL BOOSTING METHOD FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Liu Huan
    Liu Tianzhu
    Gu Yanfeng
    [J]. 2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 1714 - 1716
  • [8] A manifold framework of multiple-kernel learning for hyperspectral image classification
    Xie, Xiaodan
    Li, Bohu
    Chai, Xudong
    [J]. NEURAL COMPUTING & APPLICATIONS, 2017, 28 (11): : 3429 - 3439
  • [9] A manifold framework of multiple-kernel learning for hyperspectral image classification
    Xiaodan Xie
    Bohu Li
    Xudong Chai
    [J]. Neural Computing and Applications, 2017, 28 : 3429 - 3439
  • [10] SPATIAL-SPECTRAL MULTIPLE KERNEL LEARNING FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Gu, Yanfeng
    Feng, Kai
    Wang, Hong
    [J]. 2013 5TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2013,