Controlling epileptic seizures in a neural mass model

被引:36
|
作者
Chakravarthy, Niranjan [1 ]
Sabesan, Shivkumar [1 ]
Tsakalis, Kostas [1 ]
Iasemidis, Leon [2 ]
机构
[1] Arizona State Univ, Dept Elect Engn, Tempe, AZ 85287 USA
[2] Arizona State Univ, Harrington Dept Bioengn, Tempe, AZ 85287 USA
基金
美国国家科学基金会;
关键词
Epileptic seizures modeling; Coupled neural populations; Internal feedback; Feedback decoupling control; EXPLAIN POSTTRAUMATIC EPILEPTOGENESIS; ACTIVITY-DEPENDENT REGULATION; HIGHLY OPTIMIZED TOLERANCE; HOMEOSTATIC PLASTICITY; MATHEMATICAL-MODEL; POWER LAWS; NETWORK; BRAIN; SYNCHRONIZATION; EXCITABILITY;
D O I
10.1007/s10878-008-9182-9
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In an effort to understand basic functional mechanisms that can produce epileptic seizures, we introduce some key features in a model of coupled neural populations that enable the generation of seizure-like events and similar dynamics with the ones observed during the route of the epileptic brain towards real seizures. In this model, modified from David and Friston's neural mass model, an internal feedback mechanism is incorporated to maintain synchronous behavior within normal levels despite elevated coupling. Normal internal feedback quickly regulates an abnormally high coupling between the neural populations, whereas pathological internal feedback can lead to hypersynchronization and the appearance of seizure-like high amplitude oscillations. Feedback decoupling is introduced as a robust seizure control strategy. An external feedback decoupling controller is introduced to maintain normal synchronous behavior. The results from the analysis in this model have an interesting physical interpretation and specific implications for the treatment of epileptic seizures. The proposed model and control scheme are consistent with a variety of recent observations in the human and animal epileptic brain, and with theories from nonlinear systems, adaptive systems, optimization, and neurophysiology.
引用
收藏
页码:98 / 116
页数:19
相关论文
共 50 条
  • [41] A modification to the Kuramoto model to simulate epileptic seizures as synchronization
    Zavaleta-Viveros, Jose Alfredo
    Toledo, Porfirio
    Avendano-Garrido, Martha Lorena
    Escalante-Martinez, Jesus Enrique
    Lopez-Meraz, Maria-Leonor
    Ramos-Riera, Karen Paola
    JOURNAL OF MATHEMATICAL BIOLOGY, 2023, 87 (01)
  • [42] Mathematical model for epileptic seizures detection on an EEG recording
    Nazarikov, S. I.
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY-PRIKLADNAYA NELINEYNAYA DINAMIKA, 2023, 31 (05): : 628 - 642
  • [43] MODEL OF CELL FIRING PATTERNS DURING EPILEPTIC SEIZURES
    KACZMAREK, LK
    BIOLOGICAL CYBERNETICS, 1976, 22 (04) : 229 - 234
  • [44] A modification to the Kuramoto model to simulate epileptic seizures as synchronization
    José Alfredo Zavaleta-Viveros
    Porfirio Toledo
    Martha Lorena Avendaño-Garrido
    Jesús Enrique Escalante-Martínez
    María-Leonor López-Meraz
    Karen Paola Ramos-Riera
    Journal of Mathematical Biology, 2023, 87
  • [45] HEMOSTASIS IN EPILEPTIC SEIZURES AND EPILEPTIC STATUS
    KARLOV, VA
    MAKAROV, VA
    SHMYREV, VI
    SAVIN, AA
    ZHURNAL NEVROPATOLOGII I PSIKHIATRII IMENI S S KORSAKOVA, 1979, 79 (06): : 704 - 707
  • [46] An approach to automated classification of epileptic seizures using Artificial Neural Network
    Najumnissa, D.
    Devi, S. Shenbaga
    INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2009, 2 (04) : 382 - 399
  • [47] Intracranial Epileptic Seizures Detection Based on an Optimized Neural Network Classifier
    Gong Chen
    Liu Jiahui
    Niu Yunyun
    CHINESE JOURNAL OF ELECTRONICS, 2021, 30 (03) : 419 - 425
  • [48] Intracranial Epileptic Seizures Detection Based on an Optimized Neural Network Classifier
    GONG Chen
    LIU Jiahui
    NIU Yunyun
    ChineseJournalofElectronics, 2021, 30 (03) : 419 - 425
  • [49] An evaluation of quantum neural networks in the detection of epileptic seizures in the neonatal electroencephalogram
    N.B. Karayiannis
    A. Mukherjee
    J.R. Glover
    J.D. Frost
    Jr R.A. Hrachovy
    E.M. Mizrahi
    Soft Computing, 2006, 10 : 382 - 396
  • [50] An evaluation of quantum neural networks in the detection of epileptic seizures in the neonatal electroencephalogram
    Karayiannis, NB
    Mukherjee, A
    Glover, JR
    Frost, JD
    Hrachovy, RA
    Mizrahi, EM
    SOFT COMPUTING, 2006, 10 (04) : 382 - 396