An evaluation of quantum neural networks in the detection of epileptic seizures in the neonatal electroencephalogram

被引:0
|
作者
N.B. Karayiannis
A. Mukherjee
J.R. Glover
J.D. Frost
Jr R.A. Hrachovy
E.M. Mizrahi
机构
[1] University of Houston,Department of Electrical and Computer Engineering
[2] Baylor College of Medicine,Peter Kellaway Section of Neurophysiology, Department of Neurology
[3] Michael E. DeBakey Veterans Affairs Medical Center,undefined
来源
Soft Computing | 2006年 / 10卷
关键词
Electroencephalography; Feedforward neural network; Neonatal seizure; Neuro-fuzzy system; Quantum neural network; Uncertainty;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents the results of an experimental study that evaluated the ability of quantum neural networks (QNNs) to capture and quantify uncertainty in data and compared their performance with that of conventional feedforward neural networks (FFNNs). In this work, QNNs and FFNNs were trained to classify short segments of epileptic seizures in neonatal EEG. The experiments revealed significant differences between the internal representations created by trained QNNs and FFNNs from sample information provided by the training data. The results of this experimental study also confirmed that the responses of trained QNNs are more reliable indicators of uncertainty in the input data compared with the responses of trained FFNNs.
引用
收藏
页码:382 / 396
页数:14
相关论文
共 50 条
  • [1] An evaluation of quantum neural networks in the detection of epileptic seizures in the neonatal electroencephalogram
    Karayiannis, NB
    Mukherjee, A
    Glover, JR
    Frost, JD
    Hrachovy, RA
    Mizrahi, EM
    SOFT COMPUTING, 2006, 10 (04) : 382 - 396
  • [2] Detection of epileptic seizures with the use of convolutional neural networks
    Wiszniewski, Przemyslaw
    Kolodziej, Marcin
    Majkowski, Andrzej
    Rysz, Andrzej
    PRZEGLAD ELEKTROTECHNICZNY, 2023, 99 (02): : 51 - 55
  • [3] Multivariate features extraction for detection of epileptic seizures in electroencephalogram
    El Adawy, M.
    Ali, Aan
    Farag, Ahmed
    Abd-Elaal, AlShimaa
    INFORMATION PROCESSING IN THE SERVICE OF MANKIND AND HEALTH, 2006, : 333 - +
  • [4] Automatic Detection of Epileptic Seizures with Recurrent and Convolutional Neural Networks
    Carrion, Salvador
    Lopez-Chilet, Alvaro
    Martinez-Bernia, Javier
    Coll-Alonso, Joan
    Chorro-Juan, Daniel
    Ander Gomez, Jon
    IMAGE ANALYSIS AND PROCESSING, ICIAP 2022 WORKSHOPS, PT I, 2022, 13373 : 522 - 532
  • [5] ROBUST DETECTION OF EPILEPTIC SEIZURES USING DEEP NEURAL NETWORKS
    Hussein, Ramy
    Palangi, Hamid
    Wang, Z. Jane
    Ward, Rabab
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 2546 - 2550
  • [6] Cessation of epileptic seizures and the electroencephalogram
    Osgood, R
    Robinsono, LJ
    ARCHIVES OF NEUROLOGY AND PSYCHIATRY, 1940, 43 (05): : 1007 - 1008
  • [7] NEONATAL SEIZURES AND EPILEPTIC SEIZURES
    FURUSHO, J
    OHNO, H
    TATSUNO, M
    OKUYAMA, K
    BRAIN & DEVELOPMENT, 1988, 10 (04): : 271 - 272
  • [8] Cellular Neural Networks for the anticipation of epileptic seizures
    Tetzlaff, R
    Weiss, D
    2002 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL IV, PROCEEDINGS, 2002, : 177 - 180
  • [9] Automated detection of videotaped neonatal seizures of epileptic origin
    Karayiannis, Nicolaos B.
    Xiong, Yaohua
    Tao, Guozhi
    Frost, James D., Jr.
    Wise, Merrill S.
    Hrachovy, Richard A.
    Mizrahi, Eli M.
    EPILEPSIA, 2006, 47 (06) : 966 - 980
  • [10] Quantum information in brain neural networks and electroencephalogram
    Bob, Petr
    Faber, Josef
    Neural Network World, 1999, 9 (04): : 365 - 372