Microstructure and strengthening mechanisms of 90W-7Ni-3Fe alloys prepared using laser melting deposition

被引:33
|
作者
Wang, Y. P. [1 ,3 ]
Ma, S. Y. [1 ,3 ,4 ]
Yang, X. S. [1 ]
Zhou, Y. Z. [1 ]
Liu, X. [1 ]
Li, J. F. [1 ]
Zhang, J. J. [1 ]
Li, C. [3 ]
Wang, X. Y. [1 ]
Le, G. M. [1 ]
Zhang, Y. [2 ]
机构
[1] China Acad Engn Phys, Inst Mat, Mianyang 621908, Sichuan, Peoples R China
[2] Tech Univ Denmark, Dept Mech Engn, DK-2800 Lyngby, Denmark
[3] North China Univ Technol, Dept Mat Sci & Engn, Coll Mech & Mat Engn, Beijing 100144, Peoples R China
[4] SLM Solut Shanghai Co Ltd, Shanghai 201100, Peoples R China
基金
欧洲研究理事会; 中国国家自然科学基金;
关键词
W-NI-FE; TUNGSTEN HEAVY ALLOYS; HALL-PETCH; PROCESSING PARAMETERS; GRAPHITE NODULES; FLOW-STRESS; TENSILE; CU; DENSIFICATION; EVOLUTION;
D O I
10.1016/j.jallcom.2020.155545
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The microstructure and mechanical properties of a 90W–7Ni–3Fe heavy alloy manufactured using laser melting deposition (LMD) have been investigated with a goal of understanding the LMD process and the relevant strengthening mechanisms. A reference sample prepared using liquid phase sintering (LPS) with similar composition has been used for comparison to isolate effects of the processing rate. The results show that the nearly fully-dense LMD sample consists of two periodically alternating sublayers containing different volume fractions of W particles. Compared to the reference LPS sample, the LMD sample has a higher W content in the binder matrix, a more refined microstructure, a higher dislocation density and a lower contiguity between W particles. Furthermore, the LMD sample has a yield strength of 822 ± 30 MPa, which is about 200 MPa higher than that of the reference LPS sample. This strength difference is quantitatively analyzed based on the microstructural observations. It is shown that the increased fraction of W-matrix interfaces, a higher interface bonding strength and more pronounced constraint effects, resulting from the higher processing temperature and fast cooling of LMD, provide extra strengthening. The present study provides an important basis for optimizing the LMD process for manufacture of high W content tungsten heavy alloys with improved mechanical properties. © 2020 Elsevier B.V.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Effect of Strain Rate on the Plastic Deformation and Fracture of 90W-7Ni-3Fe Alloy Prepared by Liquid-Phase Sintering
    Yu, Yang
    Zu, Ming
    Ren, Chaoyuan
    Zhang, Wencong
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2018, 27 (12) : 6606 - 6615
  • [32] Effect of Strain Rate on the Plastic Deformation and Fracture of 90W-7Ni-3Fe Alloy Prepared by Liquid-Phase Sintering
    Yang Yu
    Ming Zu
    Chaoyuan Ren
    Wencong Zhang
    Journal of Materials Engineering and Performance, 2018, 27 : 6606 - 6615
  • [33] Dynamic Strength of Heavy 90W-7Ni-3Fe Alloy Produced by Spark Plasma Sintering
    Bragov, A. M.
    Chuvildeev, V. N.
    Melekhin, N. V.
    Filippov, A. R.
    Konstantinov, A. Yu.
    Sakharov, N. V.
    PHYSICAL MESOMECHANICS, 2019, 22 (04) : 307 - 312
  • [34] Low-temperature sintering mechanism of nanometer 90W-7Ni-3Fe composite powder
    Ma, YZ
    Huang, BY
    Fan, JL
    Xiong, X
    Wang, DL
    RARE METAL MATERIALS AND ENGINEERING, 2005, 34 (10) : 1661 - 1665
  • [35] 纳米级90W-7Ni-3Fe复合粉末的烧结特性
    马运柱
    黄伯云
    范景莲
    熊翔
    汪登龙
    中国有色金属学报, 2004, (08) : 1382 - 1388
  • [36] 纳米晶90W-7Ni-3Fe复合粉末的注射成形
    范景莲
    曲选辉
    黄伯云
    郭萍
    粉末冶金材料科学与工程, 2000, (02) : 146 - 150
  • [37] 液相烧结的90W-7Ni-3Fe合金的形变与断裂
    杜家驹
    时元龙
    金属学报, 1983, (04) : 102 - 107
  • [38] Hot Oscillation Pressure Sintered and Post Heat Treated 90W-7NI-3FE Refractory Alloy
    Gao, Ka
    Zhao, Wei
    Li, Weidong
    Liu, Wei
    An, Linan
    JOM, 2023, 75 (07) : 2535 - 2542
  • [39] 90W-7Ni-3Fe合金拉伸力学行为的应变率效应
    郭文启
    刘金旭
    吕翠翠
    李树奎
    稀有金属材料与工程, 2013, 42 (04) : 793 - 796
  • [40] WORK STRENGTHENING OF BIPHASE W-Ni-Fe ALLOYS AND THEIR MICROSTRUCTURE.
    Zhu, Guisen
    Liu, Mingcheng
    Zhen, Zhenxian
    Jinshu Xuebao/Acta Metallurgica Sinica, 1983, 19 (06):