Subclasses of Multivalent Harmonic Mappings Defined by Convolution

被引:0
|
作者
Subramanian, K. G. [1 ]
Stephen, B. Adolf [2 ]
Lee, S. K. [3 ]
机构
[1] Univ Sains Malaysia, Sch Comp Sci, Usm Penang 11800, Malaysia
[2] Madras Christian Coll, Dept Math, Madras 600059, Tamil Nadu, India
[3] Univ Sains Malaysia, Sch Math Sci, Usm Penang 11800, Malaysia
关键词
Harmonic functions; convolution; fully starlike and fully convex harmonic maps; Dziok-Srivastava linear operator; UNIVALENT-FUNCTIONS; NEGATIVE COEFFICIENTS; UNIT DISK;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A new subclass of multivalent harmonic functions defined by convolution is introduced in this paper. The subclass generates known subclasses of multivalent harmonic functions, and thus provides a unified treatment in the study of these subclasses. Sufficient coefficient conditions are obtained that are also shown to be necessary when the functions have negative coefficients. Growth estimates and extreme points are also determined. In addition conditions for starlikeness of the Dziok-Srivastava linear operator involving the generalized hypergeometric functions are discussed.
引用
收藏
页码:717 / 726
页数:10
相关论文
共 50 条
  • [21] Certain subclasses of multivalent analytic functions defined by multiplier transforms
    Wang, Zhi-Gang
    Xu, Neng
    Acu, Mugur
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (01) : 192 - 204
  • [22] Certain Subclasses of Multivalent Functions Defined by New Multiplier Transformations
    Deniz, Erhan
    Orhan, Halit
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2011, 36 (06) : 1091 - 1112
  • [23] Certain Subclasses of Multivalent Functions Defined by New Multiplier Transformations
    Erhan Deniz
    Halit Orhan
    Arabian Journal for Science and Engineering, 2011, 36 : 1091 - 1112
  • [24] A Subclasses of Harmonic Functions Defined by Multiplier Transformation
    Al-Shaqsi, Khalifa Zayid
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES, 2014, 1602 : 785 - 791
  • [25] On Certain Classes of Biharmonic Mappings Defined by Convolution
    Chen, J.
    Wang, X.
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [26] A CERTAIN CONVOLUTION APPROACH FOR SUBCLASSES OF UNIVALENT HARMONIC FUNCTIONS
    El-Ashwaw, R. M.
    Aouf, M. K.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2015, 41 (03) : 739 - 747
  • [27] ON CERTAIN SUBCLASSES OF UNIVALENT p-HARMONIC MAPPINGS
    Qiao, J.
    Chen, J.
    Shi, M.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2015, 41 (02) : 429 - 451
  • [28] Geometric properties and sections for certain subclasses of harmonic mappings
    Liu, Ming-Sheng
    Yang, Li-Mei
    MONATSHEFTE FUR MATHEMATIK, 2019, 190 (02): : 353 - 387
  • [29] Classes of harmonic functions defined by convolution
    Dziok, Jacek
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2020, 26 (02): : 399 - 416
  • [30] Geometric properties and sections for certain subclasses of harmonic mappings
    Ming-Sheng Liu
    Li-Mei Yang
    Monatshefte für Mathematik, 2019, 190 : 353 - 387