WEAK GALERKIN FINITE ELEMENT METHODS COMBINED WITH CRANK-NICOLSON SCHEME FOR PARABOLIC INTERFACE PROBLEMS

被引:1
|
作者
Deka, Bhupen [1 ]
Roy, Papri [1 ]
Kumar, Naresh [1 ]
机构
[1] Indian Inst Technol Guwahati, Dept Math, North Guwahati 781039, India
来源
关键词
Parabolic; Interface; Finite element method; Weak Galerkin method; Optimal error estimates; Low regularity; Crank-Nicolson;
D O I
10.11948/20190218
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article is devoted to the a priori error estimates of the fully discrete Crank-Nicolson approximation for the linear parabolic interface problem via weak Galerkin finite element methods (WG-FEM). All the finite element functions are discontinuous for which the usual gradient operator is implemented as distributions in properly defined spaces. Optimal order error estimates in both L-infinity (H-1) and L-infinity (L-2) norms are established for lowest order WG finite element space (P-k(K), Pk-1(partial derivative K), [Pk-1(K)](2)). Finally, we give numerical examples to verify the theoretical results.
引用
收藏
页码:1433 / 1442
页数:10
相关论文
共 50 条
  • [1] A new mixed finite element method based on the Crank-Nicolson scheme for the parabolic problems
    Weng, Zhifeng
    Feng, Xinlong
    Huang, Pengzhan
    [J]. APPLIED MATHEMATICAL MODELLING, 2012, 36 (10) : 5068 - 5079
  • [2] Adaptive Crank-Nicolson methods with dynamic finite-element spaces for parabolic problems
    Kim, Dongho
    Park, Eun-Jae
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2008, 10 (04): : 873 - 886
  • [3] Finite Element Scheme with Crank-Nicolson Method for Parabolic Nonlocal Problems Involving the Dirichlet Energy
    Chaudhary, Sudhakar
    Srivastava, Vimal
    Kumar, V. V. K. Srinivas
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2017, 14 (05)
  • [4] Two-Grid Finite Element Methods of Crank-Nicolson Galerkin Approximation for a Nonlinear Parabolic Equation
    Tan, Zhijun
    Li, Kang
    Chen, Yanping
    [J]. EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2020, 10 (04) : 800 - 817
  • [5] Error estimates of mixed finite elements combined with Crank-Nicolson scheme for parabolic control problems
    Tang, Yuelong
    [J]. AIMS MATHEMATICS, 2023, 8 (05): : 12506 - 12519
  • [6] A two-grid immersed finite element method with the Crank-Nicolson time scheme for semilinear parabolic interface problems
    Yi, Huaming
    Chen, Yanping
    Wang, Yang
    Huang, Yunqing
    [J]. APPLIED NUMERICAL MATHEMATICS, 2023, 189 : 1 - 22
  • [7] Two-Grid Finite Volume Element Method Combined with Crank-Nicolson Scheme for Semilinear Parabolic Equations
    Lou, Yuzhi
    Chen, Chuanjun
    Xue, Guanyu
    [J]. ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2021, 13 (04) : 892 - 913
  • [8] A posteriori error analysis of the Crank-Nicolson finite element method for linear parabolic interface problems: A reconstruction approach
    Sen Gupta, Jhuma
    Sinha, Rajen Kumar
    Reddy, Gujji Murali Mohan
    Jain, Jinank
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 340 : 173 - 190
  • [9] Two-grid finite element methods combined with Crank-Nicolson scheme for nonlinear Sobolev equations
    Chuanjun Chen
    Kang Li
    Yanping Chen
    Yunqing Huang
    [J]. Advances in Computational Mathematics, 2019, 45 : 611 - 630
  • [10] Two-grid finite element methods combined with Crank-Nicolson scheme for nonlinear Sobolev equations
    Chen, Chuanjun
    Li, Kang
    Chen, Yanping
    Huang, Yunqing
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2019, 45 (02) : 611 - 630