WEAK GALERKIN FINITE ELEMENT METHODS COMBINED WITH CRANK-NICOLSON SCHEME FOR PARABOLIC INTERFACE PROBLEMS

被引:1
|
作者
Deka, Bhupen [1 ]
Roy, Papri [1 ]
Kumar, Naresh [1 ]
机构
[1] Indian Inst Technol Guwahati, Dept Math, North Guwahati 781039, India
来源
关键词
Parabolic; Interface; Finite element method; Weak Galerkin method; Optimal error estimates; Low regularity; Crank-Nicolson;
D O I
10.11948/20190218
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article is devoted to the a priori error estimates of the fully discrete Crank-Nicolson approximation for the linear parabolic interface problem via weak Galerkin finite element methods (WG-FEM). All the finite element functions are discontinuous for which the usual gradient operator is implemented as distributions in properly defined spaces. Optimal order error estimates in both L-infinity (H-1) and L-infinity (L-2) norms are established for lowest order WG finite element space (P-k(K), Pk-1(partial derivative K), [Pk-1(K)](2)). Finally, we give numerical examples to verify the theoretical results.
引用
收藏
页码:1433 / 1442
页数:10
相关论文
共 50 条