Adaptive Crank-Nicolson methods with dynamic finite-element spaces for parabolic problems

被引:0
|
作者
Kim, Dongho [1 ]
Park, Eun-Jae [2 ]
机构
[1] Yonsei Univ, Dept Univ Coll, Seoul 120749, South Korea
[2] Yonsei Univ, Dept Math, Seoul 120749, South Korea
来源
关键词
adaptive mesh; discontinuous Galerkin method; a posteriori error estimators; Crank-Nicolson reconstruction; Crank-Nicolson schemes;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct a posteriori error estimators for approximate solutions of linear parabolic equations. We consider discretizations of the problem by modified discontinuous Galerkin schemes in time and continuous Galerkin methods in space. Especially, finite element spaces are permitted to change at different time levels. Exploiting Crank-Nicolson reconstruction idea introduced by Akrivis, Makridakis & Nochetto [2], we derive space-time a posteriori error estimators of second order in time for the Crank-Nicolson-Galerkin finite element method.
引用
收藏
页码:873 / 886
页数:14
相关论文
共 50 条
  • [1] WEAK GALERKIN FINITE ELEMENT METHODS COMBINED WITH CRANK-NICOLSON SCHEME FOR PARABOLIC INTERFACE PROBLEMS
    Deka, Bhupen
    Roy, Papri
    Kumar, Naresh
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2020, 10 (04): : 1433 - 1442
  • [2] A new mixed finite element method based on the Crank-Nicolson scheme for the parabolic problems
    Weng, Zhifeng
    Feng, Xinlong
    Huang, Pengzhan
    [J]. APPLIED MATHEMATICAL MODELLING, 2012, 36 (10) : 5068 - 5079
  • [3] A priori error estimates of Crank-Nicolson finite element method for parabolic optimal control problems
    Zhang, Xindan
    Zhao, Jianping
    Hou, Yanren
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 144 : 274 - 289
  • [4] Finite Element Scheme with Crank-Nicolson Method for Parabolic Nonlocal Problems Involving the Dirichlet Energy
    Chaudhary, Sudhakar
    Srivastava, Vimal
    Kumar, V. V. K. Srinivas
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2017, 14 (05)
  • [5] A Priori Error Estimates of Crank-Nicolson Finite Volume Element Method for Parabolic Optimal Control Problems
    Luo, Xianbing
    Chen, Yanping
    Huang, Yunqing
    [J]. ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2013, 5 (05) : 688 - 704
  • [6] Two-Grid Finite Element Methods of Crank-Nicolson Galerkin Approximation for a Nonlinear Parabolic Equation
    Tan, Zhijun
    Li, Kang
    Chen, Yanping
    [J]. EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2020, 10 (04) : 800 - 817
  • [7] Crank-Nicolson finite element methods for nonlocal problems with p-Laplace-type operator
    Haggar, Mahamat Saleh Daoussa
    Mbehou, Mohamed
    Njifenjou, Abdou
    [J]. JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2024, 33 (01): : 57 - 70
  • [8] On iterated Crank-Nicolson methods for hyperbolic and parabolic equations
    Bourchtein, Andrei
    Bourchtein, Ludmila
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2010, 181 (07) : 1242 - 1250
  • [9] A posteriori error analysis of the Crank-Nicolson finite element method for linear parabolic interface problems: A reconstruction approach
    Sen Gupta, Jhuma
    Sinha, Rajen Kumar
    Reddy, Gujji Murali Mohan
    Jain, Jinank
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 340 : 173 - 190
  • [10] CRANK-NICOLSON SPLITTING POSITIVE DEFINITE MIXED ELEMENT DISCRETIZATION OF PARABOLIC CONTROL PROBLEMS
    Tang, Yuelong
    Hua, Yuchun
    [J]. JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2024, 2024