Cohomological finite generation for the group scheme SL2

被引:0
|
作者
van der Kallen, Wilberd [1 ]
机构
[1] Univ Utrecht, NL-3584 CD Utrecht, Netherlands
关键词
Group scheme; Rational cohomology; Finite generation;
D O I
10.1016/j.jalgebra.2013.05.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be the group scheme SL2 defined over a noetherian ring k. If G acts on a finitely generated commutative k-algebra A, then H*(G, A) is a finitely generated k-algebra. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:216 / 220
页数:5
相关论文
共 50 条
  • [21] Short (SL2 x SL2)-structures on Lie algebras
    Beites, Patricia D.
    Cordova-Martinez, Alejandra S.
    Cunha, Isabel
    Elduque, Alberto
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2024, 118 (02)
  • [22] WEIL REPRESENTATIONS FOR GROUP SL2 (Z2)
    NOBS, A
    WOLFART, J
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1975, 281 (04): : 137 - 140
  • [23] An embedding of the universal Askey-Wilson algebra into Uq(sl2) ⊗ Uq(sl2) ⊗ Uq(sl2)
    Huang, Hau-Wen
    NUCLEAR PHYSICS B, 2017, 922 : 401 - 434
  • [24] SMALL REPRESENTATIONS OF SL2 IN THE FINITE MORLEY RANK CATEGORY
    Cherlin, Gregory
    Deloro, Adrien
    JOURNAL OF SYMBOLIC LOGIC, 2012, 77 (03) : 919 - 933
  • [25] Finite-dimensional Leibniz algebra representations of sl2
    Kurbanbaev, Tuuelbay
    Turdibaev, Rustam
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2021, 50 (03): : 845 - 854
  • [26] A class of finite-dimensional representations of Uq(sl2)
    Dong Ming Cheng
    Dong Su
    Acta Mathematica Sinica, English Series, 2013, 29 : 1703 - 1712
  • [27] A Class of Finite-Dimensional Representations of Uq(sl2)
    Dong Ming CHENG
    Dong SU
    Acta Mathematica Sinica,English Series, 2013, (09) : 1703 - 1712
  • [29] A refined scissors congruence group and the third homology of SL2
    Mirzaii, Behrooz
    Perez, Elvis Torres
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2024, 228 (06)
  • [30] SL2 OVER GROUP-RINGS OF CYCLIC GROUPS
    SIDKI, S
    JOURNAL OF ALGEBRA, 1990, 134 (01) : 60 - 79