Short (SL2 x SL2)-structures on Lie algebras

被引:0
|
作者
Beites, Patricia D. [1 ,2 ]
Cordova-Martinez, Alejandra S. [3 ,4 ,5 ]
Cunha, Isabel [1 ,2 ]
Elduque, Alberto [4 ,5 ]
机构
[1] Univ Beira Interior, Dept Matemat, P-6201001 Covilha, Portugal
[2] Univ Beira Interior, Ctr Matemat & Aplicacoes, P-6201001 Covilha, Portugal
[3] Univ Malaga, Dept Matemat Aplicada, ETS Ingn Informat, Malaga 29071, Spain
[4] Univ Zaragoza, Dept Matemat, Zaragoza 50009, Spain
[5] Univ Zaragoza, Inst Univ Matemat & Aplicac, Zaragoza 50009, Spain
关键词
S-structures; J-ternary algebras; Structurable algebras; TERNARY ALGEBRAS; CONSTRUCTION; S-4-ACTION; SYSTEMS;
D O I
10.1007/s13398-023-01541-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
S-structures on Lie algebras, introduced by Vinberg, represent a broad generalization of the notion of gradings by abelian groups. Gradings by, not necessarily reduced, root systems provide many examples of natural S-structures. Here we deal with a situation not covered by these gradings: the short (SL2 x SL2)-structures, where the reductive group is the simplest semisimple but not simple reductive group. The algebraic objects that coordinatize these structures are the J-ternary algebras of Allison, endowed with a nontrivial idempotent.
引用
收藏
页数:21
相关论文
共 50 条