共 50 条
Short (SL2 x SL2)-structures on Lie algebras
被引:0
|作者:
Beites, Patricia D.
[1
,2
]
Cordova-Martinez, Alejandra S.
[3
,4
,5
]
Cunha, Isabel
[1
,2
]
Elduque, Alberto
[4
,5
]
机构:
[1] Univ Beira Interior, Dept Matemat, P-6201001 Covilha, Portugal
[2] Univ Beira Interior, Ctr Matemat & Aplicacoes, P-6201001 Covilha, Portugal
[3] Univ Malaga, Dept Matemat Aplicada, ETS Ingn Informat, Malaga 29071, Spain
[4] Univ Zaragoza, Dept Matemat, Zaragoza 50009, Spain
[5] Univ Zaragoza, Inst Univ Matemat & Aplicac, Zaragoza 50009, Spain
来源:
关键词:
S-structures;
J-ternary algebras;
Structurable algebras;
TERNARY ALGEBRAS;
CONSTRUCTION;
S-4-ACTION;
SYSTEMS;
D O I:
10.1007/s13398-023-01541-4
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
S-structures on Lie algebras, introduced by Vinberg, represent a broad generalization of the notion of gradings by abelian groups. Gradings by, not necessarily reduced, root systems provide many examples of natural S-structures. Here we deal with a situation not covered by these gradings: the short (SL2 x SL2)-structures, where the reductive group is the simplest semisimple but not simple reductive group. The algebraic objects that coordinatize these structures are the J-ternary algebras of Allison, endowed with a nontrivial idempotent.
引用
收藏
页数:21
相关论文