Application of Transformed Prediction Ellipsoids for Outlier Detection in Multivariate Non-Gaussian Data

被引:2
|
作者
Prykhodko, Sergiy [1 ]
Makarova, Lidiia [1 ]
Prykhodko, Kateryna [2 ]
Pukhalevych, Andrii [1 ]
机构
[1] Admiral Makarov Natl Univ Shipbldg, Dept Software Automated Syst, Mykolaiv, Ukraine
[2] Admiral Makarov Natl Univ Shipbldg, Dept Informat Management Syst & Technol, Mykolaiv, Ukraine
关键词
transformed prediction ellipsoid; multivariate non-Gaussian data; normalizing transformations; outliers detection;
D O I
10.1109/TCSET49122.2020.235454
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The technique to construct a transformed prediction ellipsoid based on the bijective multivariate normalizing transformation of non-Gaussian random vector are offered. Application of the transformed prediction ellipsoids and a quantile of the Chi-Square distribution for detecting outliers in multivariate non-Gaussian data on the basis of univariate and multivariate normalizing transformations is considered. The example of outliers detection in the three-dimensional non-Gaussian source dataset is given.
引用
收藏
页码:359 / 362
页数:4
相关论文
共 50 条
  • [41] Detection of a non-Gaussian spot in WMAP
    Cruz, M
    Martínez-González, E
    Vielva, P
    Cayón, L
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2005, 356 (01) : 29 - 40
  • [42] A Novel Approach for Outlier Detection in Multivariate Data
    Afzal, Saima
    Afzal, Ayesha
    Amin, Muhammad
    Saleem, Sehar
    Ali, Nouman
    Sajid, Muhammad
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [43] Signal Discrimination via Non-Gaussian Modeling with Application to Termite Detection
    Fan, Haiyan
    Wang, Xuezhi
    Wang, Zengfu
    Kuang, Guangyao
    2015 16TH INTERNATIONAL RADAR SYMPOSIUM (IRS), 2015, : 724 - 729
  • [44] Robust Gaussian and non-Gaussian matched subspace detection
    Desai, MN
    Mangoubi, RS
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2003, 51 (12) : 3115 - 3127
  • [45] Fitting non-Gaussian persistent data
    Palma, Wilfredo
    Zevallos, Mauricio
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2011, 27 (01) : 23 - 36
  • [46] Cluster non-Gaussian functional data
    Zhong, Qingzhi
    Lin, Huazhen
    Li, Yi
    BIOMETRICS, 2021, 77 (03) : 852 - 865
  • [47] Data analysis strategies for the detection of gravitational waves in non-Gaussian noise
    Creighton, JDE
    PHYSICAL REVIEW D, 1999, 60 (02):
  • [48] Analysis of non-Gaussian POLSAR data
    Doulgeris, Anthony
    Anfinsen, Stian Normann
    Eltoft, Torbjorn
    IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 160 - 163
  • [49] Non-Gaussian Detection Using Machine Learning With Data Assimilation Applications
    Goodliff, Michael R.
    Fletcher, Steven J.
    Kliewer, Anton J.
    Jones, Andrew S.
    Forsythe, John M.
    EARTH AND SPACE SCIENCE, 2022, 9 (04)
  • [50] PREDICTION AND NON-GAUSSIAN AUTOREGRESSIVE STATIONARY SEQUENCES
    Rosenblatt, Murray
    ANNALS OF APPLIED PROBABILITY, 1995, 5 (01): : 239 - 247