Cluster non-Gaussian functional data

被引:6
|
作者
Zhong, Qingzhi [1 ,2 ]
Lin, Huazhen [1 ,2 ]
Li, Yi [3 ]
机构
[1] Southwestern Univ Finance & Econ, Ctr Stat Res, Chengdu 611130, Peoples R China
[2] Southwestern Univ Finance & Econ, Sch Stat, Chengdu 611130, Peoples R China
[3] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
基金
美国国家卫生研究院; 中国国家自然科学基金;
关键词
clustering analysis; functional principal component analysis; non-Gaussian functional data; nonparametric transformation model; penalized EM algorithm; MAXIMUM-LIKELIHOOD; CONVERGENCE-RATES; MIXTURE MODEL; REGRESSION; TRANSFORMATION;
D O I
10.1111/biom.13349
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Gaussian distributions have been commonly assumed when clustering functional data. When the normality condition fails, biased results will follow. Additional challenges occur as the number of the clusters is often unknowna priori. This paper focuses on clustering non-Gaussian functional data without the prior information of the number of clusters. We introduce a semiparametric mixed normal transformation model to accommodate non-Gaussian functional data, and propose a penalized approach to simultaneously estimate the parameters, transformation function, and the number of clusters. The estimators are shown to be consistent and asymptotically normal. The practical utility of the methods is confirmed via simulations as well as an application of the analysis of Alzheimer's disease study. The proposed method yields much less classification error than the existing methods. Data used in preparation of this paper were obtained from the Alzheimer's Disease Neuroimaging Initiative database.
引用
收藏
页码:852 / 865
页数:14
相关论文
共 50 条
  • [1] Cluster analysis with regression of non-Gaussian functional data on covariates
    Jiang, Jiakun
    Lin, Huazhen
    Peng, Heng
    Fan, Gang-Zhi
    Li, Yi
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2022, 50 (01): : 221 - 240
  • [2] Cluster Sampling Filters for Non-Gaussian Data Assimilation
    Attia, Ahmed
    Moosavi, Azam
    Sandu, Adrian
    ATMOSPHERE, 2018, 9 (06):
  • [3] Generalized Gaussian Process Regression Model for Non-Gaussian Functional Data
    Wang, Bo
    Shi, Jian Qing
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2014, 109 (507) : 1123 - 1133
  • [4] Fast Bayesian Functional Regression for Non-Gaussian Spatial Data
    Bin Kang, Hyun
    Jung, Yeo Jin
    Park, Jaewoo
    BAYESIAN ANALYSIS, 2024, 19 (02): : 407 - 438
  • [5] Functional principal component analysis estimator for non-Gaussian data
    Zhong, Rou
    Liu, Shishi
    Li, Haocheng
    Zhang, Jingxiao
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2022, 92 (13) : 2788 - 2801
  • [6] Evolution of the cluster abundance in non-Gaussian models
    Robinson, J
    Baker, JE
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2000, 311 (04) : 781 - 792
  • [7] NON-GAUSSIAN SCATTER IN CLUSTER SCALING RELATIONS
    Shaw, Laurie D.
    Holder, Gilbert P.
    Dudley, Jonathan
    ASTROPHYSICAL JOURNAL, 2010, 716 (01): : 281 - 285
  • [8] Robust functional principal component analysis for non-Gaussian longitudinal data
    Zhong, Rou
    Liu, Shishi
    Li, Haocheng
    Zhang, Jingxiao
    JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 189
  • [9] SCHWINGER FUNCTIONAL IN TERMS OF A NON-GAUSSIAN FUNCTIONAL MEASURE
    HABA, Z
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1978, 26 (05): : 451 - 457
  • [10] Fitting non-Gaussian persistent data
    Palma, Wilfredo
    Zevallos, Mauricio
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2011, 27 (01) : 23 - 36