Robust functional principal component analysis for non-Gaussian longitudinal data

被引:8
|
作者
Zhong, Rou [1 ]
Liu, Shishi [1 ]
Li, Haocheng [2 ]
Zhang, Jingxiao [1 ]
机构
[1] Renmin Univ China, Ctr Appl Stat, Sch Stat, Beijing, Peoples R China
[2] Univ Calgary, Dept Math & Stat, Calgary, AB, Canada
关键词
Functional principal component analysis; Kendall's tau function; Local polynomial smoother; Longitudinal study; Non-Gaussian; UNIFORM-CONVERGENCE RATES; SPARSE; DISEASE; REGRESSION; RISK;
D O I
10.1016/j.jmva.2021.104864
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Functional principal component analysis is essential in functional data analysis, but the inference will become unconvincing when non-Gaussian characteristics occur (e.g., heavy tail and skewness). The focus of this manuscript is to develop a robust functional principal component analysis methodology to deal with non-Gaussian longitudinal data, where sparsity and irregularity along with non-negligible measurement errors must be considered. We introduce a Kendall's tau function to handle the non-Gaussian issues. Moreover, the estimation algorithm is studied and the asymptotic theory is discussed. Our method is validated by a simulation study and it is applied to analyze a real world dataset. (C) 2021 Published by Elsevier Inc.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Functional principal component analysis estimator for non-Gaussian data
    Zhong, Rou
    Liu, Shishi
    Li, Haocheng
    Zhang, Jingxiao
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2022, 92 (13) : 2788 - 2801
  • [2] Compressed Principal Component Analysis of Non-Gaussian Vectors
    Mignolet, Marc
    Soize, Christian
    [J]. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2020, 8 (04): : 1261 - 1286
  • [3] Principal Variables Analysis for Non-Gaussian Data
    Clark-Boucher, Dylan
    Miller, Jeffrey W.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2024,
  • [4] Robust Preliminary-Summation-based Principal Component Analysis for Non-Gaussian Processes with Outliers
    Lou, Zhijiang
    Tuo, Jianyong
    Wang, Youqing
    [J]. 2017 6TH INTERNATIONAL SYMPOSIUM ON ADVANCED CONTROL OF INDUSTRIAL PROCESSES (ADCONIP), 2017, : 294 - 299
  • [5] Robust principal component analysis for functional data
    Peña, D
    Prieto, J
    [J]. TEST, 1999, 8 (01) : 56 - 60
  • [6] Robust principal component analysis for functional data
    N. Locantore
    J. S. Marron
    D. G. Simpson
    N. Tripoli
    J. T. Zhang
    K. L. Cohen
    Graciela Boente
    Ricardo Fraiman
    Babette Brumback
    Christophe Croux
    Jianqing Fan
    Alois Kneip
    John I. Marden
    Daniel Peña
    Javier Prieto
    Jim O. Ramsay
    Mariano J. Valderrama
    Ana M. Aguilera
    N. Locantore
    J. S. Marron
    D. G. Simpson
    N. Tripoli
    J. T. Zhang
    K. L. Cohen
    [J]. Test, 1999, 8 (1) : 1 - 73
  • [7] Functional principal component analysis for longitudinal and survival data
    Yao, Fang
    [J]. STATISTICA SINICA, 2007, 17 (03) : 965 - 983
  • [8] Robust principal component analysis for functional data - Discussion
    Boente, G
    Fraiman, R
    [J]. TEST, 1999, 8 (01) : 28 - 35
  • [9] Gaussian and non-Gaussian Double Subspace Statistical Process Monitoring Based on Principal Component Analysis and Independent Component Analysis
    Huang, Jian
    Yan, Xuefeng
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2015, 54 (03) : 1015 - 1027
  • [10] Preliminary-summation-based principal component analysis for non-Gaussian processes
    Lou, Zhijiang
    Shen, Dong
    Wang, Youqing
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2015, 146 : 270 - 289