Robust functional principal component analysis for non-Gaussian longitudinal data

被引:8
|
作者
Zhong, Rou [1 ]
Liu, Shishi [1 ]
Li, Haocheng [2 ]
Zhang, Jingxiao [1 ]
机构
[1] Renmin Univ China, Ctr Appl Stat, Sch Stat, Beijing, Peoples R China
[2] Univ Calgary, Dept Math & Stat, Calgary, AB, Canada
关键词
Functional principal component analysis; Kendall's tau function; Local polynomial smoother; Longitudinal study; Non-Gaussian; UNIFORM-CONVERGENCE RATES; SPARSE; DISEASE; REGRESSION; RISK;
D O I
10.1016/j.jmva.2021.104864
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Functional principal component analysis is essential in functional data analysis, but the inference will become unconvincing when non-Gaussian characteristics occur (e.g., heavy tail and skewness). The focus of this manuscript is to develop a robust functional principal component analysis methodology to deal with non-Gaussian longitudinal data, where sparsity and irregularity along with non-negligible measurement errors must be considered. We introduce a Kendall's tau function to handle the non-Gaussian issues. Moreover, the estimation algorithm is studied and the asymptotic theory is discussed. Our method is validated by a simulation study and it is applied to analyze a real world dataset. (C) 2021 Published by Elsevier Inc.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] SIMULTANEOUS NON-GAUSSIAN COMPONENT ANALYSIS (SING) FOR DATA INTEGRATION IN NEUROIMAGING
    Risk, Benjamin B.
    Gaynanova, Irina
    [J]. ANNALS OF APPLIED STATISTICS, 2021, 15 (03): : 1431 - 1454
  • [22] singR: An R Package for Simultaneous Non-Gaussian Component Analysis for Data
    Wang, Liangkang
    Gaynanova, Irina
    Risk, Benjamin
    [J]. R JOURNAL, 2023, 15 (04): : 69 - 83
  • [23] Analysis of non-Gaussian POLSAR data
    Doulgeris, Anthony
    Anfinsen, Stian Normann
    Eltoft, Torbjorn
    [J]. IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 160 - 163
  • [24] Robust functional principal components for sparse longitudinal data
    Boente, Graciela
    Salibian-Barrera, Matias
    [J]. METRON-INTERNATIONAL JOURNAL OF STATISTICS, 2021, 79 (02): : 159 - 188
  • [25] Robust functional principal components for sparse longitudinal data
    Graciela Boente
    Matías Salibián-Barrera
    [J]. METRON, 2021, 79 : 159 - 188
  • [26] DERIVATIVE PRINCIPAL COMPONENT ANALYSIS FOR REPRESENTING THE TIME DYNAMICS OF LONGITUDINAL AND FUNCTIONAL DATA
    Dai, Xiongtao
    Muller, Hans-Georg
    Tao, Wenwen
    [J]. STATISTICA SINICA, 2018, 28 (03) : 1583 - 1609
  • [27] Non-Gaussian Component Analysis using Entropy Methods
    Goyal, Navin
    Shetty, Abhishek
    [J]. PROCEEDINGS OF THE 51ST ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '19), 2019, : 840 - 851
  • [28] Optimization and testing in linear non-Gaussian component analysis
    Jin, Ze
    Risk, Benjamin B.
    Matteson, David S.
    [J]. STATISTICAL ANALYSIS AND DATA MINING, 2019, 12 (03) : 141 - 156
  • [29] Robust Degradation Analysis With Non-Gaussian Measurement Errors
    Zhai, Qingqing
    Ye, Zhi-Sheng
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2017, 66 (11) : 2803 - 2812
  • [30] Generalized Gaussian Process Regression Model for Non-Gaussian Functional Data
    Wang, Bo
    Shi, Jian Qing
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2014, 109 (507) : 1123 - 1133