A note on the Cauchy problem of the Novikov equation

被引:63
|
作者
Wu, Xinglong [1 ]
Yin, Zhaoyang [1 ]
机构
[1] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
关键词
the Novikov equation; local well-posedness; ill-posedness; Besov spaces; lower semicontinuity; peakon solutions; 35G25; 35L05; SHALLOW-WATER EQUATION; GLOBAL WEAK SOLUTIONS; INTEGRABLE EQUATION; BREAKING WAVES; SHOCK-WAVES;
D O I
10.1080/00036811.2011.649735
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we mainly study the Cauchy problem of the Novikov equation. We first establish local well-posedness of the equation in Besov space . Then we derive a lower bound for the maximal existence time and lower semicontinuity of the existence time. Finally, we prove that the equation is ill-posed in by peakon solutions which exist globally in time to the equation.
引用
收藏
页码:1116 / 1137
页数:22
相关论文
共 50 条
  • [21] On the Cauchy problem of a new integrable two-component Novikov equation
    Yongsheng Mi
    Daiwen Huang
    Monatshefte für Mathematik, 2020, 193 : 361 - 381
  • [22] On the Cauchy problem of a new integrable two-component Novikov equation
    Mi, Yongsheng
    Huang, Daiwen
    MONATSHEFTE FUR MATHEMATIK, 2020, 193 (02): : 361 - 381
  • [23] On the Cauchy problem for the new integrable two-component Novikov equation
    Mi, Yongsheng
    Mu, Chunlai
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2020, 199 (03) : 1091 - 1122
  • [24] NOTE ON CAUCHY-PROBLEM FOR LAPLACE EQUATION
    DEMIDOV, AS
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 1992, 17 (4B): : 685 - 685
  • [25] The Cauchy problem for a two-component Novikov equation in the critical Besov space
    Tang, Hao
    Liu, Zhengrong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 423 (01) : 120 - 135
  • [26] On the Cauchy problem for a combined mCH-Novikov integrable equation with linear dispersion
    Wan, Zhenyu
    Wang, Ying
    Zhu, Min
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 416 : 727 - 767
  • [27] On the Cauchy problem for the weakly dissipative modified Camassa-Holm-Novikov equation
    Wu, Jinhong
    Wang, Ying
    Zhu, Min
    MONATSHEFTE FUR MATHEMATIK, 2025, 206 (04): : 967 - 1007
  • [28] GLOBAL ANALYTIC SOLUTIONS AND TRAVELING WAVE SOLUTIONS OF THE CAUCHY PROBLEM FOR THE NOVIKOV EQUATION
    Wu, Xinglong
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (04) : 1537 - 1550
  • [29] The Cauchy Problem for the Generalized Hyperbolic Novikov-Veselov Equation via the Moutard Symmetries
    Yurova, Alla A.
    Yurov, Artyom, V
    Yurov, Valerian A.
    SYMMETRY-BASEL, 2020, 12 (12): : 1 - 17
  • [30] Well-posedness and analyticity of the Cauchy problem for the multi-component Novikov equation
    Yongsheng Mi
    Boling Guo
    Ting Luo
    Monatshefte für Mathematik, 2020, 191 : 295 - 323