Chern-Simons functional under gauge transformations on flat bundles

被引:2
|
作者
Byun, Yanghyun [1 ]
Kim, Joohee [1 ]
机构
[1] Hanyang Univ, Dept Math, Coll Nat Sci, Wangsimni Ro 222, Seoul 133791, South Korea
关键词
Chern-Simons functional defined by a reference connection; Degree of a gauge transformation; Global Maurer-Cartan 3-form on the adjoint bundle of a flat bundle;
D O I
10.1016/j.geomphys.2016.09.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe the effect of a gauge transformation on the Chern-Simons functional in a thorough and unifying manner. We use the assumptions that the structure group is compact and connected and, in particular, that the principal bundle is flat. The ChernSimons functional we consider is the one defined by choosing a flat reference connection. The most critical step in arriving at the main result is to show both the existence and the uniqueness of a cohomology class on the adjoint bundle such that it is the class of the socalled Maurer-Cartan 3-form when restricted to each fiber. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:82 / 93
页数:12
相关论文
共 50 条
  • [21] REAL VORTICES AND THE CHERN-SIMONS GAUGE FIELD
    BARCI, DG
    OXMAN, LE
    PHYSICAL REVIEW D, 1995, 52 (02): : 1169 - 1175
  • [22] On gauge invariance of noncommutative Chern-Simons theories
    Chen, GH
    Wu, YS
    NUCLEAR PHYSICS B, 2002, 628 (03) : 473 - 485
  • [23] Semiclassical approximation in Chern-Simons gauge theory
    Adams, DH
    GEOMETRIC ANALYSIS AND APPLICATIONS TO QUANTUM FIELD THEORY, 2002, 205 : 1 - 20
  • [24] Duality, generalized Chern-Simons terms and gauge transformations in a high dimensional curved spacetime
    Echigoya, H
    Miyazaki, T
    Shibuya, T
    PHYSICS LETTERS B, 2003, 561 (3-4) : 279 - 283
  • [25] Chern-Simons forms on associated bundles, and boundary terms
    Johnson, David L.
    GEOMETRIAE DEDICATA, 2007, 128 (01) : 39 - 54
  • [26] INTERPOLATING GAUGE-FIXING FOR CHERN-SIMONS THEORY
    LANDSTEINER, K
    LANGER, M
    SCHWEDA, M
    SORELLA, SP
    PHYSICS LETTERS B, 1994, 337 (3-4) : 294 - 302
  • [27] Phase structure of Abelian Chern-Simons gauge theories
    Smorgrav, E
    Smiseth, J
    Sudbo, A
    Nogueira, FS
    EUROPHYSICS LETTERS, 2004, 68 (02): : 198 - 204
  • [28] EXTENSION OF CHERN-SIMONS FORMS AND NEW GAUGE ANOMALIES
    Antoniadis, Ignatios
    Savvidy, George
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2014, 29 (3-4):
  • [29] THE LATTICE ABELIAN CHERN-SIMONS GAUGE-THEORY
    KAVALOV, AR
    MKRTCHYAN, RL
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1991, 6 (22): : 3919 - 3931
  • [30] COSET CONSTRUCTIONS IN CHERN-SIMONS GAUGE-THEORY
    ISIDRO, JM
    LABASTIDA, JMF
    RAMALLO, AV
    PHYSICS LETTERS B, 1992, 282 (1-2) : 63 - 72