INTERPOLATING GAUGE-FIXING FOR CHERN-SIMONS THEORY

被引:4
|
作者
LANDSTEINER, K
LANGER, M
SCHWEDA, M
SORELLA, SP
机构
[1] Institut für Theoretische Physik, Technische Universität Wien, 1040 Wien
关键词
D O I
10.1016/0370-2693(94)90978-4
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Chern-Simons theory is analyzed with a gauge-fixing which allows to discuss the Landau gauge and the light-cone gauge at the same time.
引用
下载
收藏
页码:294 / 302
页数:9
相关论文
共 50 条
  • [1] Geometric aspects of interpolating gauge fixing in Chern-Simons Theory
    Gallot, Laurent
    Mathieu, Philippe
    Pilon, Eric
    Thuillier, Frank
    MODERN PHYSICS LETTERS A, 2018, 33 (02)
  • [2] Interpolating gauge-fixing for Yang-Mills-Chern-Simons theory in D=3
    Azevedo, Daniel O. R.
    Del Cima, Oswaldo M.
    Dias, Thadeu S.
    Pereira, Emilio D.
    EUROPEAN PHYSICAL JOURNAL C, 2024, 84 (09):
  • [3] Gauge-fixing, semiclassical approximation and potentials for graded Chern-Simons theories
    Lazaroiu, CI
    Roiban, R
    JOURNAL OF HIGH ENERGY PHYSICS, 2002, (03):
  • [4] Hamiltonian, path integral, and BRST formulations of the Chern-Simons theory under appropriate gauge-fixing
    Kulshreshtha, Usha
    Kulshreshtha, D. S.
    CANADIAN JOURNAL OF PHYSICS, 2008, 86 (02) : 401 - 407
  • [5] CHERN-SIMONS THEORY IN AXIAL GAUGE
    KAPUSTIN, AN
    PRONIN, PI
    PHYSICS LETTERS B, 1992, 274 (3-4) : 363 - 366
  • [6] Gauge dependence in Chern-Simons theory
    Dilkes, FA
    Martin, LC
    Mckeon, DGC
    Sherry, TN
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1999, 14 (03): : 463 - 479
  • [7] Poisson Chern-Simons gauge theory
    Morariu, B
    JOURNAL OF HIGH ENERGY PHYSICS, 2001, (10):
  • [8] SYMMETRIES OF CHERN-SIMONS THEORY IN LANDAU GAUGE
    DAMGAARD, PH
    RIVELLES, VO
    PHYSICS LETTERS B, 1990, 245 (01) : 48 - 52
  • [9] Mirror maps in Chern-Simons gauge theory
    Cooper, L
    Kogan, II
    Szabo, RJ
    ANNALS OF PHYSICS, 1998, 268 (01) : 61 - 104
  • [10] CHERN-SIMONS THEORY WITH FINITE GAUGE GROUP
    FREED, DS
    QUINN, F
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 156 (03) : 435 - 472