Lattice approach to Wigner-type theorems

被引:1
|
作者
Chevalier, G [1 ]
机构
[1] Univ Lyon 1, Inst Camille Jordan, UMR 5208, F-69622 Lyon, France
关键词
orthomodular lattices; lattices of subspaces; pair of dual spaces; Wigner's theorem;
D O I
10.1007/s10773-005-8956-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Wigner's Theorem states that a bijective transformation of the set of all one-dimensional linear subspaces of a complex Hilbert space which preserves orthogonality is induced by either a unitary or an anti-unitary operator. There exist many Wigner-type theorems, in particular in indefinite metric spaces, von Neumanns algebras and Banach spaces and we try to find a common origin of all these results by using properties of the lattice subspaces of certain topological vector spaces. We prove a Wigner-type theorem for a pair of dual spaces which allows us to obtain, as particular cases, the usual Wigner's Theorem and some of its generalizations.
引用
收藏
页码:1905 / 1915
页数:11
相关论文
共 50 条
  • [31] Polaron in the Wigner lattice
    Lenac, Z
    Sunjic, M
    PHYSICAL REVIEW B, 1999, 59 (10): : 6752 - 6761
  • [32] WIGNER-and MARCHENKO-PASTUR-TYPE LIMIT THEOREMS for JACOBI PROCESSES
    Auer, Martin
    Voit, Michael
    Woerner, Jeannette H.C.
    arXiv, 2022,
  • [33] Wigner functions on a lattice
    Takami, A.
    Hashimoto, T.
    Horibe, M.
    Hayashi, A.
    Physical Review A. Atomic, Molecular, and Optical Physics, 2001, 64 (03): : 1 - 032114
  • [34] Lattice Wigner equation
    Solorzano, S.
    Mendoza, M.
    Succi, S.
    Herrmann, H. J.
    PHYSICAL REVIEW E, 2018, 97 (01)
  • [35] DUAL-LATTICE THEOREMS IN THE GEOMETRIC APPROACH.
    Basile, G.
    Marro, G.
    1600, (48):
  • [36] Cafiero approach to the Dieudonne type theorems
    de Lucia, Paolo
    Pap, Endre
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 337 (02) : 1151 - 1157
  • [37] Jordan-wigner type transformations and Hamiltonian circuits in a rectangular lattice
    Kochmanski M.S.
    Russian Physics Journal, 1997, 40 (10) : 973 - 977
  • [38] ELECTRICAL CONDUCTION IN WIGNER LATTICE IN N TYPE INSB IN A MAGNETIC FIELD
    CARE, CM
    MARCH, NH
    JOURNAL OF PHYSICS PART C SOLID STATE PHYSICS, 1971, 4 (18): : L372 - &
  • [39] Interval type local limit theorems for lattice type random variables and distributions
    Fleermann, M.
    Kirsch, W.
    Toth, G.
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2022, 94 (05) : 698 - 709
  • [40] On lattice sums and Wigner limits
    Borwein, David
    Borwein, Jonathan M.
    Straub, Armin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 414 (02) : 489 - 513