One-time sintering process to modify xLi2MnO3 (1-x)LiMO2 hollow architecture and studying their enhanced electrochemical performances

被引:48
|
作者
Wang, Renheng [1 ]
Sun, Yiling [1 ]
Yang, Kaishuai [1 ]
Zheng, Junchao [2 ]
Li, Yan [1 ]
Qian, Zhengfang [1 ]
He, Zhenjiang [2 ,4 ]
Zhong, Shengkui [3 ]
机构
[1] Shenzhen Univ, Coll Phys & Optoelect Engn, Shenzhen 518060, Guangdong, Peoples R China
[2] Cent South Univ, Sch Met & Environm, Changsha 410083, Hunan, Peoples R China
[3] Hainan Trop Ocean Univ, Sch Marine Sci & Technol, Sanya 572000, Hainan, Peoples R China
[4] Donghua Univ, Coll Environm Sci & Engn, Shanghai 201620, Peoples R China
来源
JOURNAL OF ENERGY CHEMISTRY | 2020年 / 50卷 / 50期
基金
中国国家自然科学基金;
关键词
Lithium rich cathode materials; One-time sintering process; Coated and doped; Electrochemical performances; First-principles calculations; CATHODE MATERIALS; RECHARGEABLE LITHIUM; CO ELECTRODES; LI; SURFACE; MN; LINI0.5MN0.3CO0.2O2; SPINEL; ZRO2; NI;
D O I
10.1016/j.jechem.2020.03.042
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
To solve the critical problems of lithium rich cathode materials, e.g., structure instability and short cycle life, we have successfully prepared a ZrO2-coated and Zr-doping xLi(2)MnO(3)center dot(1-x)LiMO2 hollow architecture via one-time sintering process. The modified structural materials as lithium-ion cathodes present good structural stability and superior cycle performance in LIBs. The discharge capacity of the ZrO2-coated and Zr-doped hollow pristine is 220 mAh g(-1) at the 20th cycle at 0.2 C (discharge capacity loss, 2.7%) and 150 mAh g(-1) at the 100th cycle at 1 C (discharge capacity loss, 17.7%), respectively. However, hollow pristine electrode only delivers 203 mAh g(-1) at the 20th cycle at 0.2 C and 124 mAh g(-1) at the 100th cycle at 1 C, respectively, and the corresponding to capacity retention is 92.2% and 72.8%, respectively. Diffusion coefficients of modified hollow pristine electrode are much higher than that of hollow pristine electrode after 100 cycles (approach to 1.4 times). In addition, we simulate the adsorption reaction of HF on the surface of ZrO2-coated layer by the first-principles theory. The calculations prove that the adsorption energy of HF on the surface of ZrO2-coated layer is about -1.699 eV, and the ZrO2-coated layer could protect the hollow spherical xLi(2)MnO(3)center dot(1-x)LiMO2 from erosion by HF. Our results would be applicable for systematic amelioration of high-performance lithium rich material for anode with the respect of practical application. (C) 2020 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
引用
收藏
页码:271 / 279
页数:9
相关论文
共 50 条
  • [31] Hollow microspherical layered xLi2MnO3•(1-x)LiNiO2 (x=0.3-0.7) as cathode material for lithium-ion batteries
    Zhang, Kai
    Zhang, Lei
    Liu, Junjie
    Wu, Xiongwei
    Zhou, Chunjiao
    Yan, Wenqi
    Zhou, Congshan
    Fu, Lijun
    Wu, Yuping
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 790 : 1034 - 1042
  • [32] First-Principles Calculations, Electrochemical and X-ray Absorption Studies of Li-Ni-PO4 Surface-Treated xLi2MnO3 • (1-x)LiMO2 (M = Mn, Ni, Co) Electrodes for Li-Ion Batteries
    Shin, D.
    Wolverton, C.
    Croy, J. R.
    Balasubramanian, M.
    Kang, S. -H.
    Rivera, C. M. Lopez
    Thackeray, Michael M.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (02) : A121 - A127
  • [33] The significance of the Li2MnO3 component in 'composite' xLi2MnO3 • (1-x)LiMn0.5Ni0.5O2 electrodes
    Johnson, CS
    Kim, JS
    Lefief, C
    Li, N
    Vaughey, JT
    Thackeray, MM
    ELECTROCHEMISTRY COMMUNICATIONS, 2004, 6 (10) : 1085 - 1091
  • [34] Preparation and electrochemical performances of xLi2MnO3•(1-x) LiNi0.45Co0.2Mn0.35O2 (0 ≤ x ≤ 1) for high-power lithium-ion batteries
    Li, Xinlu
    Long, Junjun
    Su, Zelong
    Wang, Ronghua
    Xu, Chaohe
    Lei, Juan
    CERAMICS INTERNATIONAL, 2018, 44 (14) : 17062 - 17068
  • [35] Synthesis and electrochemical characteristics of xLi2MnO3•(1-x)Li(Ni1/3Co1/3Mn1/3)O2 compounds
    Yu, Ling-yan
    Qiu, Wei-hua
    Huang, Jia-yuan
    Lian, Fang
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2009, 16 (04) : 458 - 462
  • [36] Synthesis and electrochemical performance of xLi2MnO3•(1-x)LiMn0.5Ni0.4Co0.1O2 for lithium ion battery
    He, Zhenjiang
    Wang, Zhixing
    Guo, Huajun
    Li, Xinhai
    Yue, Peng
    Wang, Jiexi
    Xiong, Xunhui
    POWDER TECHNOLOGY, 2013, 235 : 158 - 162
  • [38] A Comparison of High Capacity xLi2MnO3•(1-x)LiMO2 (M=Ni,Co,Mn) Cathodes in Lithium-Ion Cells with Li4Ti5O12- and Carbon-Encapsulated Anatase TiO2 Anodes
    Kang, S. -H.
    Pol, V. G.
    Belharouak, I.
    Thackeray, M. M.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (03) : A267 - A271
  • [39] 不同镍钴锰比对xLi2MnO3-(1-x)LiMO2正极材料的结构和电化学性能的影响
    彭继明
    陈玉华
    刘世成
    胡思江
    王红强
    李庆余
    化工学报, 2016, 67 (07) : 2950 - 2955
  • [40] Elucidation of the origin of voltage hysteresis in xLi2MnO3 • (1-x) LiCoO2 using backstitch charge-discharge method
    Ariyoshi, Kingo
    Inoue, Takayuki
    Yamada, Yusuke
    ELECTROCHIMICA ACTA, 2020, 334