One-time sintering process to modify xLi2MnO3 (1-x)LiMO2 hollow architecture and studying their enhanced electrochemical performances

被引:48
|
作者
Wang, Renheng [1 ]
Sun, Yiling [1 ]
Yang, Kaishuai [1 ]
Zheng, Junchao [2 ]
Li, Yan [1 ]
Qian, Zhengfang [1 ]
He, Zhenjiang [2 ,4 ]
Zhong, Shengkui [3 ]
机构
[1] Shenzhen Univ, Coll Phys & Optoelect Engn, Shenzhen 518060, Guangdong, Peoples R China
[2] Cent South Univ, Sch Met & Environm, Changsha 410083, Hunan, Peoples R China
[3] Hainan Trop Ocean Univ, Sch Marine Sci & Technol, Sanya 572000, Hainan, Peoples R China
[4] Donghua Univ, Coll Environm Sci & Engn, Shanghai 201620, Peoples R China
来源
JOURNAL OF ENERGY CHEMISTRY | 2020年 / 50卷 / 50期
基金
中国国家自然科学基金;
关键词
Lithium rich cathode materials; One-time sintering process; Coated and doped; Electrochemical performances; First-principles calculations; CATHODE MATERIALS; RECHARGEABLE LITHIUM; CO ELECTRODES; LI; SURFACE; MN; LINI0.5MN0.3CO0.2O2; SPINEL; ZRO2; NI;
D O I
10.1016/j.jechem.2020.03.042
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
To solve the critical problems of lithium rich cathode materials, e.g., structure instability and short cycle life, we have successfully prepared a ZrO2-coated and Zr-doping xLi(2)MnO(3)center dot(1-x)LiMO2 hollow architecture via one-time sintering process. The modified structural materials as lithium-ion cathodes present good structural stability and superior cycle performance in LIBs. The discharge capacity of the ZrO2-coated and Zr-doped hollow pristine is 220 mAh g(-1) at the 20th cycle at 0.2 C (discharge capacity loss, 2.7%) and 150 mAh g(-1) at the 100th cycle at 1 C (discharge capacity loss, 17.7%), respectively. However, hollow pristine electrode only delivers 203 mAh g(-1) at the 20th cycle at 0.2 C and 124 mAh g(-1) at the 100th cycle at 1 C, respectively, and the corresponding to capacity retention is 92.2% and 72.8%, respectively. Diffusion coefficients of modified hollow pristine electrode are much higher than that of hollow pristine electrode after 100 cycles (approach to 1.4 times). In addition, we simulate the adsorption reaction of HF on the surface of ZrO2-coated layer by the first-principles theory. The calculations prove that the adsorption energy of HF on the surface of ZrO2-coated layer is about -1.699 eV, and the ZrO2-coated layer could protect the hollow spherical xLi(2)MnO(3)center dot(1-x)LiMO2 from erosion by HF. Our results would be applicable for systematic amelioration of high-performance lithium rich material for anode with the respect of practical application. (C) 2020 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
引用
收藏
页码:271 / 279
页数:9
相关论文
共 50 条
  • [21] Study of the Lithium-Rich Integrated Compound xLi2MnO3 • (1-x)LiMO2 (x around 0.5; M = Mn, Ni, Co; 2:2:1) and Its Electrochemical Activity as Positive Electrode in Lithium Cells
    Amalraj, Francis
    Talianker, Michael
    Markovsky, Boris
    Sharon, Daniel
    Burlaka, Luba
    Shafir, Gilead
    Zinigrad, Ella
    Haik, Ortal
    Aurbach, Doron
    Lampert, Jordan
    Schulz-Dobrick, Martin
    Garsuch, Arnd
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (02) : A324 - A337
  • [22] Enhancing the rate capability of high capacity xLi2MnO3 • (1-x)LiMO2 (M = Mn, Ni, Co) electrodes by Li-Ni-PO4 treatment
    Kang, Sun-Ho
    Thackeray, Michael M.
    ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (04) : 748 - 751
  • [23] Ex situ and in situ Raman microscopic investigation of the differences between stoichiometric LiMO2 and high-energy xLi2MnO3.(1-x)LiMO2 (M = Ni, Co, Mn)
    Lanz, Patrick
    Villevieille, Claire
    Novak, Petr
    ELECTROCHIMICA ACTA, 2014, 130 : 206 - 212
  • [24] Research progress of Layered xLi2MnO3-(1-x) LiMO2 (M=Ni,Co,Mn•••) solid solution materials
    Yuan, Xiaolei
    Xu, Qunjie
    Jin, Xue
    Zhou, Luo-Zeng
    ENERGY DEVELOPMENT, PTS 1-4, 2014, 860-863 : 876 - +
  • [25] Simulation of First-Charge Oxygen-Dimerization and Mn-Migration in Li-Rich Layered Oxides xLi2MnO3•(1-x)LiMO2 and Implications for Voltage Fade
    Benedek, Roy
    Iddir, Hakim
    JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (12): : 6492 - 6499
  • [26] Progress of Research on the Li-rich Cathode Materials xLi2MnO3• (1-x) LiMO2 (M=Co, Fe, Ni1/2Mn1/2 ... ) for Li-ion Batteries
    Zhao Yu-Juan
    Feng Hai-Lan
    Zhao Chun-Song
    Sun Zhao-Qin
    JOURNAL OF INORGANIC MATERIALS, 2011, 26 (07) : 673 - 679
  • [27] 锂离子电池富锂过渡金属氧化物xLi2MnO3·(1-x)LiMO2(M=Ni,Co或Mn)正极材料
    白莹
    李雨
    仲云霞
    陈实
    吴锋
    吴川
    化学进展, 2014, 26(Z1) (Z1) : 259 - 269
  • [28] Synthesis and Electrochemical and Structural Investigations of Oxidatively Stable Li2MoO3 and xLi2MoO3•(1-x)LiMO2 Composite Cathodes
    Self, Ethan C.
    Zou, Lianfeng
    Zhang, Ming-Jian
    Opfer, Richard
    Ruther, Rose E.
    Veith, Gabriel M.
    Song, Bohang
    Wang, Chongmin
    Wang, Feng
    Huq, Ashfia
    Nanda, Jagjit
    CHEMISTRY OF MATERIALS, 2018, 30 (15) : 5061 - 5068
  • [29] 锂离子电池富锂正极材料xLi2MnO3·(1-x)LiMO2(M=Co,Fe,Ni1/2Mn1/2…)的研究进展
    赵煜娟
    冯海兰
    赵春松
    孙召琴
    无机材料学报, 2011, 26 (07) : 673 - 679
  • [30] Synthesis and electrochemical property of xLi2MnO3•(1-x)LiMnO2 composite cathode materials derived from partially reduced Li2MnO3
    Zhang, Qinggang
    Peng, Tianyou
    Zhan, Dan
    Hu, Xiaohong
    JOURNAL OF POWER SOURCES, 2014, 250 : 40 - 49