Feature Enhancement Network for Object Detection in Optical Remote Sensing Images

被引:58
|
作者
Cheng, Gong [1 ]
Lang, Chunbo [1 ]
Wu, Maoxiong [1 ]
Xie, Xingxing [1 ]
Yao, Xiwen [1 ]
Han, Junwei [1 ]
机构
[1] Northwestern Polytech Univ, Sch Automat, Xian 710129, Peoples R China
来源
JOURNAL OF REMOTE SENSING | 2021年 / 2021卷
基金
美国国家科学基金会;
关键词
D O I
10.34133/2021/9805389
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Automatic and robust object detection in remote sensing images is of vital significance in real-world applications such as land resource management and disaster rescue. However, poor performance arises when the state-of-the-art natural image detection algorithms are directly applied to remote sensing images, which largely results from the variations in object scale, aspect ratio, indistinguishable object appearances, and complex background scenario. In this paper, we propose a novel Feature Enhancement Network (FENet) for object detection in optical remote sensing images, which consists of a Dual Attention Feature Enhancement (DAFE) module and a Context Feature Enhancement (CFE) module. Specifically, the DAFE module is introduced to highlight the network to focus on the distinctive features of the objects of interest and suppress useless ones by jointly recalibrating the spatial and channel feature responses. The CFE module is designed to capture global context cues and selectively strengthen class-aware features by leveraging image-level contextual information that indicates the presence or absence of the object classes. To this end, we employ a context encoding loss to regularize the model training which promotes the object detector to understand the scene better and narrows the probable object categories in prediction. We achieve our proposed FENet by unifying DAFE and CFE into the framework of Faster R-CNN. In the experiments, we evaluate our proposed method on two large-scale remote sensing image object detection datasets including DIOR and DOTA and demonstrate its effectiveness compared with the baseline methods.
引用
收藏
页数:14
相关论文
共 50 条
  • [11] Fine-Grained Feature Enhancement for Object Detection in Remote Sensing Images
    Zhou, Yong
    Wang, Sifan
    Zhao, Jiaqi
    Zhu, Hancheng
    Yao, Rui
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [12] Oriented Object Detection Based on Foreground Feature Enhancement in Remote Sensing Images
    Lin, Peng
    Wu, Xiaofeng
    Wang, Bin
    REMOTE SENSING, 2022, 14 (24)
  • [13] Object Detection in Remote Sensing Images by Combining Feature Enhancement and Hybrid Attention
    Zheng, Jin
    Wang, Tong
    Zhang, Zhi
    Wang, Hongwei
    APPLIED SCIENCES-BASEL, 2022, 12 (12):
  • [14] Feature Enhancement and Feedback Network for Change Detection in Remote Sensing Images
    Jiang, Zhenghao
    Wang, Biao
    Xu, Xiao
    Zhang, Yaobo
    Zhang, Peng
    Wu, Yanlan
    Yang, Hui
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2025, 22
  • [15] X-shape Feature Expansion Network for Salient Object Detection in Optical Remote Sensing Images
    Huang, Lisu
    Sun, Minghui
    Liang, Yanhua
    Qin, Guihe
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT VII, 2023, 14260 : 246 - 258
  • [16] MULTI-SCALE FEATURE FUSION NETWORK FOR OBJECT DETECTION IN VHR OPTICAL REMOTE SENSING IMAGES
    Zhang, Wenhua
    Jiao, Licheng
    Liu, Xu
    Liu, Jia
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 330 - 333
  • [17] Gated Ladder-Shaped Feature Pyramid Network for Object Detection in Optical Remote Sensing Images
    Liu, Nanqing
    Celik, Turgay
    Li, Heng-Chao
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [18] Object Detection in Optical Remote Sensing Images Based on Residual Network
    Li, Da
    Gong, Shaoxing
    Liu, Dong
    2020 4TH INTERNATIONAL CONFERENCE ON MACHINE VISION AND INFORMATION TECHNOLOGY (CMVIT 2020), 2020, 1518
  • [19] Feature Split-Merge-Enhancement Network for Remote Sensing Object Detection
    Ma, Wenping
    Li, Na
    Zhu, Hao
    Jiao, Licheng
    Tang, Xu
    Guo, Yuwei
    Hou, Biao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [20] Multiscale Feature Adaptive Fusion for Object Detection in Optical Remote Sensing Images
    Lv, Hao
    Qian, Weixing
    Chen, Tianxiao
    Yang, Han
    Zhou, Xuecheng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19